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Radio signals from air showers



Xmax

Shower maximum 

X
max

 varies with 

primary particle 
mass
- on average
- in distribution

Longitudinal profile of number of particles



Mass composition of cosmic rays, 
from air shower maximum Xmax

Maximum of 
air shower: Xmax

~300 m
~ 300 antennas (LOFAR)
Or ~ 20,000 (SKA)



The LOFAR Superterp





Low-band antenna 
(LBA, 30-80 MHz) 

close-up
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Trigger using particle detector array (LORA)

Used to trigger a readout of 
the transient buffers of each 
antenna

Figs by K. Mulrey



Pulses in LOFAR antennas
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Pulses in LOFAR antennas
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  Our raw material: 

One pulse in every dipole
(unprocessed time series)

● Amplitude & integrated power
● Arrival time 
● Polarization
● Shape / spectrum
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Pulse analysis steps

• Measure arrival time using Hilbert envelope
● Sub-sample accuracy, < 1 ns LOFAR
● Used for arrival direction
● Contains info on shower development

• Measure integrated power (energy fluence)
● To construct radio footprint 

and compare to simulations

• Polarization signature
• Pulse shape 
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Pulse analysis steps: arrival time

• Measure arrival time using 
Hilbert envelope

● Pulse detections in one LOFAR station

• Requires: up-to-date 
timing calibration per antenna

● From observatory, ideally
● From phases of narrow-band RFI

(A&A 2016, arXiv:1603.08354)

● From drone-based calibration signal
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Pulse analysis steps: beamforming (far field)

• Beamforming by time-shifting each 
trace according to geometric delay

• Far-field approximation works well 
for small stations (~ 30 m)

● Used to identify pulse location in trace
● Generally speaking, more complex 

wavefront shape: hyperboloid
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Integrate ‘power’ in a time window

● Width of time window not too large (noise)

Measuring energy fluence
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Integrate ‘power’ in a time window

● Requires: absolute gain calibration 
per antenna

Mulrey et al., Astropart. Phys. (2019), 1903.05988

Measuring energy fluence



320 m

Best-fitting Corsika/CoREAS-
simulated radio footprint

Pulse energy per 
LOFAR antenna

LOFAR inner core







19

Matching simulated footprints to data

• Simulate about 30 showers 

per measured shower

• Fit them to data, observe 

Xmax of best fit

x 30

• Resolution (@LOFAR) about 20 g/cm2

• Systematic uncertainties < 9 g/cm2

• In line with state of the art in the field



Result: Average Xmax versus primary energy

• Green lines: average Xmax for 

pure proton composition

• Red lines: average Xmax for 

pure iron composition

Corstanje et al., Phys Rev D 103, 102006 (2021)
arXiv: 2103.12549



Results on mass composition

• Light-mass component (p+He) 

of 23 to 39% at best fit

• Still considerable (correlated) 

uncertainties, some inevitable 

• overlap of Xmax distributions

• Hadronic interaction models

x 334 Corstanje et al., Phys Rev D 103, 102006 (2021), arXiv: 2103.12549

Main coverage in lg E: 17.39 +/- 0.32



SKA-Low antennas
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SKA-Low antennas
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LOFAR: resonance ~ 58 MHz 
(note log scale!)

SKA: much flatter response 
over 300 MHz bandwidth (lin scale)



Pulses in SKA-Low antennas
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SKA-Low, a really dense array

LOFAR  SKA antenna layout
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SKA-Low, a really dense array!
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SKA-Low, a really dense array!

So, simulate 60,000 antennas??
(200 antennas takes 1.5 CPU-day)

Now what?
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Interpolation from star-shape polar grid
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(50-350 MHz, no antenna model)
Simulating 60,000 antennas is intractable

But: signals will not vary much across ~ 2 meters (redundancy)

So, an interpolation routine would be helpful

Requires high accuracy 
(in line with measuring with 60,000 antennas)

and full signal traces
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Interpolation based on Fourier series
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(50-350 MHz, no antenna model)
Idea: 
• At each radial position, use Fourier series (FFT) to 

describe the angular variations
• To a large extent: ~ cos(phi)
• If purely sum of geomagnetic and charge excess, 

ampli f(x, y) ~ 1 + C cos(phi), C = charge excess 
fraction

• Energy: 
      f^2(x, y) ~ 1 + ½ C2 + 2C cos(phi) + ½ C2 cos(2 phi)

• Express as sum of cos & sin for clarity
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Idea: 
• At each radial position, use Fourier series (FFT) to 

describe the angular variations
• To a large extent: ~ cos(phi)

• Interpolate radially ALL the 8 components of the Fourier 
series

• Polar coordinates on grid, r gives Fourier components, 
evaluate at phi

• At each point, you have a sum    
      I(r, phi) = I0 (r) + Σ ck(r) cos(k*phi) + Σ sk(r) sin(k*phi)

• Use cubic splines in radial direction on the components, 
     i.e. I0(r), ck(r), and sk(r).

Interpolation based on Fourier series

(50-350 MHz, no antenna model)
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Decomposition in angular Fourier modes

= +

+ Higher order terms ~ 2 %

(100 %) ~ 20 %CR Footprint

“monopole” “dipole”
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Interpolating full traces: Amplitude spectra
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Performance results: pulse traces

0 10 20 30 40 50
0.00004

0.00002

0.00000

0.00002

0.00004

0.00006

0.00008

x = 184.8 m, y = 76.5 m, r = 200.00 m

CC = 0.99831, CCmax = 0.99836,  t = -0.02 ns, Cutoff 448.3 MHz

Orig pulse (unfiltered)
Interpolated pulse
Difference

0 10 20 30 40 50
0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

x = 138.6 m, y = 57.4 m, r = 150.00 m

CC = 0.99868, CCmax = 0.99964,  t = 0.04 ns, Cutoff 448.3 MHz

Orig pulse (unfiltered)
Interpolated pulse
Difference

30 to 500 MHz; 
differences hard to see



34

Performance results: fluence accuracy

● 30 to 500 MHz

● Accuracy better than 1 %, 
< 0.1 % for strong pulses

● Inclined showers had sub-
optimal simulated antenna 
coverage

● When accuracy degrades, 
thinning artifacts etc become 
important

● “SKA-worthy” accuracy
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Interpolation method

3535

(50-350 MHz, no antenna model)

● Paper: 
Corstanje et al., JINST 18 P09005, 2023
arXiv: 2306.13514

● Code:
github.com/nu-radio/cr-pulse-interpolator

● Simulate 208 antennas, interpolate to ~ 60,000
(takes ~ 3 hours)



What makes SKA-Low unique for CR measurements?

● Very high antenna density, found nowhere else

● e.g. Auger, GRAND etc. focus on highest energies,
need very large area: antenna spacing ~ 50 – 200 m

● Wider frequency band than LOFAR, Auger/AERA

● Measuring air showers at the highest level of detail
● Energy range 1016 to 1018 eV
● More info on longitudinal distribution than just Xmax
● Better constraints on proton fraction, mass composition 
● Reveals differences between hadronic interaction models

at energies beyond LHC



The SKA layout
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• The SKA antenna layout
with particle detectors

• Placed quasi-randomly 
alongside antenna stations, 
respecting a 10 m distance 
to the nearest antenna

arXiv:2504.16873
submitted to Phys Rev D 600 400 200 0 200 400
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Fig. 1



Monte Carlo setup for SKA reconstruction
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• Start from CoREAS traces
• Use pulse interpolation to get ~ 30,000 antenna traces
• Decimate number of antennas if desired (speed)

• Apply SKA Antenna model (NRR-SKALA4)
• De-disperse pulses (unit-gain filter)
• Add Galactic noise (NRR)
• Apply noise-whitening filter
• Measure fluence in 24 ns time window, 5 sigma threshold

• Get fluence uncertainty from formula found using noise-Monte Carlo
● No noise trials needed in simulated measurement
● Still memory intensive with up to 30,000 antennas



Fluence uncertainty versus (real) fluence
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• Get fluence uncertainty from formula found using noise Monte Carlo
● Determine fluence on simulated positions 1000 times with different noise realizations 
● For 30 showers
● For 5 different energy levels to see different pulse shapes at various fluence levels etc

● Formula: uncertainty = sqrt(A * fluence + B)

● Gaussian uncorrelated noise:
A = 4 sigma^2 
B = 2 N_s sigma^4

N_s = number of samples in window
sigma = stddev of noise



Noise spectrum and example time trace
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• Noise spectrum from the Galaxy, plus flat-spectrum thermal noise at 30% of 
Galactic noise energy

• Time trace of a pulse, after phase-compensation filter (hence symmetric)

Fig. 1
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Example footprint on ground and in shower plane
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• Footprint of a zen 30 degree air shower



Simulation ensemble
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• 140 showers each: 50 p, 20 He, 20 C, 20 Si, 30 Fe

• From east; zenith angle 15, 30, 40 degrees

• Use one shower as mock data, use other 139 to reconstruct Xmax

• Do all showers in turn as ‘data’

• Determine reco-Xmax minus true Xmax
● Average error: bias
● Stddev error: precision



Fit quality, chi-squared vs Xmax
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• Example fit quality plot, with Xmax reconstruction (parabola fit)
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Bias and precision of Xmax reconstruction
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• Versus primary energy, with 1 in 4 antennas as “full array”
• Compare to 20 g/cm2 precision on average with LOFAR 
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Bias and precision of Xmax reconstruction
with (pseudo-)beamforming 
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• Results stay good down to 10^16.0 eV 
• Again taking 1 in 4 antennas as “full array”
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Example footprint with max dynamic range 32 sigma
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• Cutting out all antennas where >= 1 polarization saturates the range

● 10^17.5 eV 10^17.8 eV



Bias & precision results with dynamic range 32 sigma
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• Degradation at lg E >= 17.6
• Bias increases, has to be investigated (later, not here)
• Precision manageable, though newer analyses may be impacted more
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Mass composition results
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• How many showers needed to have:
● Systematic uncertainties >> statistical uncertainties
● A mass composition in narrow energy bins, improving over LOFAR (2021)
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Mass composition results
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• Bootstrap: take best-fitting mass composition (LOFAR)
● Do random drawing from Xmax distribution for that composition, 

add random Xmax errors +/- 7 g/cm2, account for syst errors +/- 9 g/cm2
● Run that drawing through same mass composition analysis

0

20

40

60

80

100

Pa
rti

cle
 fr

ac
tio

n 
[ %

 ]

p He N Fe
QGSJetII-04

N = 1000

p He N Fe
EPOS-LHC

N = 1000

p He N Fe
Sibyll2.3d

N = 1000
Best fit
Syst & stat uncertainties
Stat uncertainties

0

20

40

60

80

100

Pa
rti

cle
 fr

ac
tio

n 
[ %

 ]
p He N Fe

QGSJetII-04

N = 3000

p He N Fe
EPOS-LHC

N = 3000

p He N Fe
Sibyll2.3d

N = 3000
Best fit
Syst & stat uncertainties
Stat uncertainties



Cosmic ray spectrum & expected event counts
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• Event counts in an energy bin of width 0.1 in lg E/eV
• Over 1 observing year = 1 year of CR-mode uptime
• Nature-limited above lg E ~ 17.3, tech/obs limited below
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Next steps
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• Results presented here are just the beginning!

• There is more to be measured than only Xmax and energy
● Longitudinal distribution
● Special showers (‘double bumps’)

• New analysis techniques
● Information field theory
● Interferometry / beamforming
● Other approaches that use timing, polarization, frequency spectra
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Beyond Xmax: Longitudinal distribution of particles

Parameter L: width (variance)

Parameter R: asymmetry (skewness)

Varying L Varying R



Reconstruction result for L+R combination
50 – 100 MHz
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~ 5000 antennas triggered

Reconstructed “L+R” = 203.8 g/cm2, 

True “L+R” = 204.2 g/cm2

Reconstruction Xmax, and L+R 
together still to do

Ensemble at fixed Xmax = 645.0 +/- 0.5 g/cm2
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Distribution (tail) of L parameter: proton fraction

Tails are highest for helium, not protons
● Independent handle on proton fraction!

Fig. by S. Buitink



Outlier showers, ‘double bumps’

● Filter to 150 – 350 MHz band for sharper features
● Secondary shower visible separately (though uncommon)
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Outlier showers

● SNR boost by a factor 4 from beamforming patches of 16 antennas
● Further enhancement; clearly detectable double structure

E = 7 x 1016 eV



Summary

● SKA is the ‘ultimate’ dense radio array for cosmic-ray detection

● Using established techniques developed for LOFAR,
precision on Xmax is 3x better than LOFAR, using known techniques
(may improve later, measuring full shower evolution)

● Energy range extended to lower energies, 1016 to 1018 eV now available
● Mass composition analysis in narrow energy bins will be possible,

for low energies quite soon

● New techniques promise to add new, independent information
● Mass composition (p/He separation)
● Hadronic physics



58

Backup 
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