Radio measurements of cosmic rays: the road from LOFAR to SKA

Arthur Corstanje Vrije Universiteit Brussel, Radboud University Nijmegen

Extensive air showers

Radio signals from air showers

Longitudinal profile of number of particles

Extensive air showers

The LOFAR Superterp

Low-band antenna (LBA, 30-80 MHz) close-up

Trigger using particle detector array (LORA)

Figs by K. Mulrey

Used to trigger a readout of the transient buffers of each antenna

Pulses in LOFAR antennas

Pulses in LOFAR antennas

Our raw material:

One pulse in every dipole (unprocessed time series)

- Amplitude & integrated power
- Arrival time
- Polarization
- Shape / spectrum

Pulse analysis steps

- Measure arrival time using Hilbert envelope
 - Sub-sample accuracy, < 1 ns LOFAR
 - Used for arrival direction
 - Contains info on shower development
- Measure integrated power (energy fluence)
 - To construct **radio footprint** and compare to simulations
- Polarization signature
- Pulse shape

Pulse analysis steps: arrival time

- Measure arrival time using Hilbert envelope
 - Pulse detections in one LOFAR station

- Requires: up-to-date timing calibration per antenna
 - From observatory, ideally
 - From phases of narrow-band RFI (A&A 2016, arXiv:1603.08354)
 - From drone-based calibration signal

Pulse analysis steps: beamforming (far field)

- Beamforming by time-shifting each trace according to geometric delay
- Far-field approximation works well for small stations (~ 30 m)
 - Used to identify pulse location in trace
 - Generally speaking, more complex wavefront shape: hyperboloid

Measuring energy fluence

Integrate 'power' in a time window

• Width of time window not too large (noise)

Measuring energy fluence

Integrate 'power' in a time window

• **Requires**: absolute gain calibration per antenna

LOFAR inner core 320 m Best-fitting Corsika/CoREASsimulated radio footprint

> Pulse energy per LOFAR antenna

Matching simulated footprints to data

- Simulate about 30 showers per measured shower
- Fit them to data, observe

 $X_{\rm max}$ of best fit

- Resolution (@LOFAR) about 20 g/cm²
- Systematic uncertainties < 9 g/cm²
- In line with state of the art in the field

Result: Average X_{max} versus primary energy

Green lines: average X_{max} for pure proton composition

Red lines: average X_{max} for pure iron composition

Corstanje et al., Phys Rev D 103, 102006 (2021) arXiv: **2103.12549**

Results on mass composition

- Light-mass component (p+He) of 23 to 39% at best fit
- Still considerable (correlated) uncertainties, some inevitable
 - overlap of X_{max} distributions
 - Hadronic interaction models

SKA-Low antennas

SKA-Low antennas

LOFAR: resonance ~ **58 MHz** (note log scale!)

SKA: much flatter response over **300 MHz bandwidth** (lin scale)

Antenna model NRR_SKALA2

Pulses in SKA-Low antennas

Use raw voltage signals per antenna After offline filtering stage (e.g. de-dispersion)

SKA-Low, a really dense array

SKA-Low, a really dense array!

So, simulate 60,000 antennas?? (200 antennas takes 1.5 CPU-day)

Now what?

Interpolation from star-shape polar grid

Simulating 60,000 antennas is intractable

But: signals will not vary much across ~ 2 meters (redundancy)

So, an interpolation routine would be helpful

Requires **high accuracy** (in line with measuring with 60,000 antennas)

and full signal traces

Interpolation based on Fourier series

Idea:

- At each radial position, use Fourier series (FFT) to describe the angular variations
 - To a large extent: ~ cos(phi)
 - If purely sum of geomagnetic and charge excess, ampli f(x, y) ~ 1 + C cos(phi), C = charge excess fraction
 - Energy:

 $f^2(x, y) \sim 1 + \frac{1}{2}C^2 + 2C\cos(phi) + \frac{1}{2}C^2\cos(2phi)$

Express as sum of cos & sin for clarity

Interpolation based on Fourier series

Idea:

- At each radial position, use Fourier series (FFT) to describe the angular variations
 - To a large extent: ~ cos(phi)
- Interpolate radially ALL the 8 components of the Fourier series
- Polar coordinates on grid, r gives Fourier components, evaluate at phi
- At each point, you have a sum $I(r, phi) = I_0(r) + \Sigma c_k(r) \cos(k^*phi) + \Sigma s_k(r) \sin(k^*phi)$
- Use **cubic splines** in radial direction on the components, i.e. $I_0(r)$, $c_k(r)$, and $s_k(r)$.

Decomposition in angular Fourier modes

Interpolating full traces: Amplitude spectra

Each single-valued function at an antenna location can be passed into the interpolator (!) For example:

Arrival time

Amplitude at frequency f

Performance results: pulse traces

30 to 500 MHz; differences hard to see

Performance results: fluence accuracy

• 30 to 500 MHz

- Accuracy better than 1 %, < 0.1 % for strong pulses
- Inclined showers had suboptimal simulated antenna coverage
- When accuracy degrades, thinning artifacts etc become important
- "SKA-worthy" accuracy 34

Interpolation method

• Paper: Corstanje et al., JINST 18 P09005, 2023 arXiv: 2306.13514

• Code:

github.com/nu-radio/cr-pulse-interpolator

 Simulate 208 antennas, interpolate to ~ 60,000 (takes ~ 3 hours)

What makes SKA-Low unique for CR measurements?

- Very high antenna density, found nowhere else
 - e.g. Auger, GRAND etc. focus on highest energies, need very large area: antenna spacing ~ 50 – 200 m
- Wider frequency band than LOFAR, Auger/AERA
- Measuring air showers at the highest level of detail
 - Energy range 10¹⁶ to 10¹⁸ eV
 - More info on longitudinal distribution than just Xmax
 - Better constraints on proton fraction, mass composition
 - Reveals differences between hadronic interaction models at energies beyond LHC

The SKA layout

- The SKA antenna layout with particle detectors
- Placed quasi-randomly alongside antenna stations, respecting a 10 m distance to the nearest antenna

arXiv:**2504.16873** submitted to Phys Rev D

Monte Carlo setup for SKA reconstruction

- Start from CoREAS traces
- Use pulse interpolation to get ~ 30,000 antenna traces
- Decimate number of antennas if desired (speed)
- Apply SKA Antenna model (NRR-SKALA4)
- De-disperse pulses (unit-gain filter)
- Add Galactic noise (NRR)
- Apply noise-whitening filter
- Measure fluence in 24 ns time window, 5 sigma threshold
- Get fluence uncertainty from formula found using noise-Monte Carlo
 - No noise trials needed in simulated measurement
 - Still memory intensive with up to 30,000 antennas

Fluence uncertainty versus (real) fluence

- Get fluence uncertainty from formula found using noise Monte Carlo
 - Determine fluence on simulated positions 1000 times with different noise realizations
 - For 30 showers
 - For 5 different energy levels to see different pulse shapes at various fluence levels etc
 - Formula: uncertainty = sqrt(A * fluence + B)
 - Gaussian uncorrelated noise: A = 4 sigma²
 B = 2 N_s sigma⁴
 - N_s = number of samples in window sigma = stddev of noise

Noise spectrum and example time trace

- Noise spectrum from the Galaxy, plus flat-spectrum thermal noise at 30% of Galactic noise energy
- Time trace of a pulse, after phase-compensation filter (hence symmetric)

Example footprint on ground and in shower plane

Footprint of a zen 30 degree air shower

Simulation ensemble

- 140 showers each: 50 p, 20 He, 20 C, 20 Si, 30 Fe
- From east; zenith angle 15, 30, 40 degrees
- Use one shower as mock data, use other 139 to reconstruct Xmax
- Do all showers in turn as 'data'
- Determine reco-Xmax minus true Xmax
 - Average error: bias
 - Stddev error: precision

Fit quality, chi-squared vs Xmax

Example fit quality plot, with Xmax reconstruction (parabola fit)

Bias and precision of Xmax reconstruction

- Versus primary energy, with 1 in 4 antennas as "full array"
- Compare to 20 g/cm² precision on average with LOFAR

Bias and precision of Xmax reconstruction with (pseudo-)beamforming

- Results stay good down to 10^{16.0} eV
- Again taking 1 in 4 antennas as "full array"

Example footprint with max dynamic range 32 sigma

• Cutting out all antennas where >= 1 polarization saturates the range

Bias & precision results with dynamic range 32 sigma

- Degradation at lg E >= 17.6
- · Bias increases, has to be investigated (later, not here)
- Precision manageable, though newer analyses may be impacted more

Mass composition results

- How many showers needed to have:
 - Systematic uncertainties >> statistical uncertainties
 - A mass composition in narrow energy bins, improving over LOFAR (2021)

Mass composition results

- Bootstrap: take best-fitting mass composition (LOFAR)
 - Do random drawing from Xmax distribution for that composition, add random Xmax errors +/- 7 g/cm2, account for syst errors +/- 9 g/cm2
 - Run that drawing through same mass composition analysis

Cosmic ray spectrum & expected event counts

- Event counts in an energy bin of width 0.1 in Ig E/eV
- Over 1 observing year = 1 year of CR-mode uptime
- Nature-limited above Ig E ~ 17.3, tech/obs limited below

Next steps

- Results presented here are just the beginning!
- There is more to be measured than only Xmax and energy
 - Longitudinal distribution
 - Special showers ('double bumps')
- New analysis techniques
 - Information field theory
 - Interferometry / beamforming
 - Other approaches that use timing, polarization, frequency spectra

Beyond Xmax: Longitudinal distribution of particles

$$N(X) = \exp\left(-\frac{X - X_{\max}}{RL}\right) \left(1 - \frac{R}{L}\left(X - X_{\max}\right)\right)^{\frac{1}{R^2}}$$

Parameter L: width (variance)

Parameter R: asymmetry (skewness)

Reconstruction result for L+R combination 50 - 100 MHz

Distribution (tail) of L parameter: proton fraction

Tails are highest for helium, not protonsIndependent handle on proton fraction!

54

Outlier showers, 'double bumps'

- Filter to 150 350 MHz band for sharper features
- Secondary shower visible separately (though uncommon)

Outlier showers

- SNR boost by a factor 4 from beamforming patches of 16 antennas
- Further enhancement; clearly detectable double structure

Summary

- SKA is the 'ultimate' dense radio array for cosmic-ray detection
- Using established techniques developed for LOFAR, precision on Xmax is 3x better than LOFAR, using known techniques (may improve later, measuring full shower evolution)
- Energy range extended to lower energies, **10**¹⁶ to **10**¹⁸ eV now available
- Mass composition analysis in narrow energy bins will be possible, for low energies quite soon
- New techniques promise to add new, independent information
 - Mass composition (p/He separation)
 - Hadronic physics

Backup