

Benjamin Flaggs (with results and efforts from many collaborators)

KIT Seminar – July 3, 2025

Cosmic-Ray Air Showers

Heitler-Matthews Model:

- $\frac{1}{3}$ of CR energy $\Rightarrow \pi^0$
- $\frac{2}{3}$ of energy $\Rightarrow \pi^{\pm}$

Hadronic component (π^{\pm}) feeds electromagnetic component ($e^{\pm/-}$, γ)

Shower development continues until the "depth of shower maximum" (X_{max})

Detection of Air Showers

Two main ways to detect air showers:

Particle detection

- Directly measure all shower particles at surface (water-Cherenkov detectors, scintillators)
- b. Measure penetrating muons (underground detectors)

2. Electromagnetic radiation

- a. Air-Cherenkov light
- b. Fluorescence light
- c. Radio emission

Detection of Air Showers

Two main ways to detect air showers:

Particle detection

- Directly measure all shower particles at surface (water-Cherenkov detectors, scintillators)
- b. Measure penetrating muons (underground detectors)

2. Electromagnetic radiation

- a. Air-Cherenkov light
- b. Fluorescence light
- c. Radio emission

Radio Emission from Air Showers

Time-varying charges generate EM emission

Radio Emission from Air Showers

Time-varying charges generate EM emission

Geomagnetic

Lorentz force deflection of e⁺/e⁻

$$F = q (v \times B) = ma$$

Geomagnetic emission

Radio Emission from Air Showers

Time-varying charges generate EM emission

Geomagnetic

Lorentz force deflection of e⁺/e⁻

$$F = q (v \times B) = ma$$

Radio Emission to Antenna Signal

Oscillating E field from radio waves exerts force on free electrons at antenna surface

Induces oscillating voltage on antenna arm

Signal on order of microvolts to millivolts, must be amplified (makes self triggering radio difficult)

Raw Signal Towards an Energy Fluence

Raw signal amplified by low noise amplifier (LNA)

2. Digitizer converts signal to voltage

3. Unfold the antenna response → transforms voltage to E field

C. Glaser, PhD Thesis.

The Radio Footprint

Energy fluence (radio) footprint from LDF fit

- Direction
- Primary mass
- Energy

Shower Maximum closer to ground means smaller footprint and steeper LDF

Spatial integral of fluence footprint yields total radiation energy

$$E_{\rm rad} \propto E_{\rm CR}^{-2}$$

Pierre Auger Observatory

World's largest cosmic-ray observatory, 3000 km² in size

Hybrid observations of air showers!

Enhancements to the Pierre Auger Observatory

- water-Cherenkov detectors (SD)
- FD field of view

AERA (RD)

HEAT field of view

AMIGA Unitary Cell (MD)

Auger Muons and Infill for the Ground Array (AMIGA)

- Denser detector spacing → lowers energy threshold (~ 10¹⁷ eV)
- Underground muon detectors

Auger Engineering Radio Array (AERA)

153 radio stations over 17 km²

Pierre Auger Collaboration 12

AugerPrime: Upgrade of the Pierre Auger Observatory

- Adding scintillators + radio antennas to each surface detector
- Upgraded electronics

Inclined shower mass composition ($\theta > 65^{\circ}$)

- Radio → probes EM component
- SD → measures muonic component

Separately Probing EM and Muonic Components

Best prospects for mass separation

Holds across all zenith angles, better for vertical showers

AERA Results – Xmax

AERA Results – Xmax

AERA Results – Xmax

Plans for Further Radio Antennas

Synergize with existing detectors to maximize science potential

Existing SKALA Antennas @ Auger for IceCube-Gen2

Prototype IceCube-Gen2 Station

Power from CRS Communication and timing via fiber from CRS

Drone photo by Tim Huege

Air-Shower Search

Search for air showers in band not dominated by noise sources

Use 110-185 MHz → lessens contribution from anthropogenic noise + high signal-to-noise ratio

IceCube-Gen2 and Pierre Auger Collaborations, PoS(ARENA2024)037

Coincident Air Showers with Auger

Match scintillator triggered events to Auger SD reconstructed events by timestamp

Search in time window of +/- 50 ms

- Timing offset between WhiteRabbit and Auger SD
- Working on fix with Andreas Weindl to achieve o(ns) precision

Coincident Air Showers with Auger

Events passing time window and directional reconstruction cuts, ~ 0.5 events / day

Coincident Air Showers with Auger

Simulate radio emission w/ CoREAS as consistency check

Cosmic rays measured from o(10 PeV) with only three antennas

IceCube-Gen2 and Pierre Auger Collaborations, PoS(ARENA2024)037, ICRC2025 upcoming

Plans for a Denser Radio Array

18 further SKALA antennas → Positions optimized through simulation study

Antenna

50

y (m)

Science Potential

- Adds full efficiency for vertical shower (θ < 30°) reconstructions above ~10^{17.5} eV
- SKALA \rightarrow 70-350 MHz, AERA \rightarrow 30-80 MHz
- Coincident measurements with underground muon detectors → shower physics
- Optional: Interferometry and cross-calibration

Site Schematics

Site Inspection – Antennas

Access tubes to route coaxial cables to LNAs

Fencing to keep animals out

Deployment – Antennas

Antenna heads + LNAs assembled at observatory to minimize risk of ESD in field

Antennas
assembled at
CRS and
transported by
truck to sites

Antenna legs fixed to concrete foundations

Site Inspection – Station Centers

Concrete slabs for mounting station center

Access port for cables/fibers

Schematic – Station Centers

Charge Controller with RFI shielding

TAXI DAQ

Solar Panel (24V, 440Wp, bifacial)

6 AGM Batteries (12V, 120 Ah)

Deployment – Station Centers

Local staff drive truck to location, unload, then assist

Trenching from Access Ports

Very rocky area of the Auger array

Feed cables/fibers through tubing

Cover openings where possible

Bury when finished

Grounding

Dry and rocky area → low conductivity in soil

Salt will retain moisture in soil, increases conductivity

Fibers – Trigger

Optical trigger from surface detector tank Lety Jr

- o(100 Hz) local trigger rate (T1 level trigger)
- reduced to <0.01 Hz when later comparing to T3 triggers

Small box in SD electronics dome connects to UUB trigger out

Notch made and fibers put in tube for protection

Fibers – Communication

Fiber distribution box for connection to WhiteRabbit in CRS

Provides communication, data transfer, and timing

Main DAQ Control in CRS

Laptop provides remote access to each station DAQ (TAXI) and WR

Data storage on 8TB SSD

Wifi to

Coihueco

All communication fibers connected to WhiteRabbit via 8 cable fiber

WR to provide ns precision (in progress via GPS)

Fiber Testing for Signal Confirmation

Measure pulses output by SD trigger out (fed to 6 trigger Tx boards)

Measure signal as seen by 6 trigger Rx boards at station DAQs

Some signals attenuated too much at Tx, Sasha Novikov + Andres Travaini working on fix

Dust Accumulation in Station Centers

Large dust accumulation in 3 of 6 station centers after one week

Seal DAQs with electrical tape to prevent dust reaching electronics

dGPS Measurements + Merging to Offline

Differential GPS measurements taken for all station and antenna locations

Also for orientation of antenna arms to check alignment

Carmen Merx currently working to implement antenna locations and SKALA antenna models to offline

Matching Events via Timestamps

100 Hz trigger rate for 18 antennas

- ~2 TB of data per day
- Would fill 8 TB SSD quickly...

Matching timestamps of T1 trigger with Lety Jr. T3 requests reduces to o(0.01 Hz)

Stef Verpoest working to extract matched times from radio binaries

Full data taking to start once extraction is working

Deployment + Fun

Summary

Array of 18 SKALA antennas (70-350 MHz) deployed in the densest part of the Auger array

- Goals: Full efficiency of vertical showers, coincident measurements with underground muon detectors
- Potential for cross-calibration of radio energy scales between AERA and SKALA

Array fully deployed in March 2025

- Partial data taking since April 2025
- Similar analysis pipeline to IceCube prototype station @ Auger → physics results to follow soon!

A big thank you to all involved in the station, here at KIT, at UD, and all the local staff at Auger

Backup

Energy Range for Auger/IceCube Cross-Calibration

Radio signal-to-noise ratio best at high frequencies

Slide from Frank Schröder 50

Measuring Energy Fluence at Antenna

The Poynting vector gives the energy flux of an EM field

$$\vec{S} = \vec{E} imes \vec{H} = rac{1}{n} |\vec{E}|^2 \cdot \hat{n}$$
 (assuming plane waves in isotropic medium, such as lower atmosphere $\stackrel{f e}{\circ}$)

Integrating Poynting vector over radio trace (time) yields energy fluence observed by antenna

Must subtract omnipresent noise background

$$f = \int_{t_0}^{t_1} \varepsilon_0 c |\vec{E}(t)|^2 dt - \frac{t_1 - t_0}{t_{b1} - t_{b0}} \int_{t_{b0}}^{t_{b1}} \varepsilon_0 c |\vec{E}(t)|^2 dt$$

Labeling of Station Centers

Labeled with spray paint for easy visibility from road

Andres Travaini from local staff to label baseplates of antennas

