Quark-mass effects in Higgs-boson production in gluon fusion

Project A1a

M. Czakon, R. Harlander

Plan:

- Status
- Some open problems in Higgs-boson production description:
 - Total inclusive cross section
 - Differential cross section
 - Kinematical limits
 - Resummation and bottom Yukawa coupling
- Semi-numerical methods
- Conclusions

Status experiment

 $5.1 \text{ fb}^{-1} (7 \text{ TeV}) + 19.7 \text{ fb}^{-1} (8 \text{ TeV}) + 35.9 \text{ fb}^{-1} (13 \text{ TeV})$ Observed **CMS** $--\pm 1\sigma$ (stat \oplus syst) <u>±1</u>σ (syst) tīH(WW*) — ±2σ (stat ⊕ syst) $t\bar{t}H(ZZ^*)$ $t\bar{t}H(\gamma\gamma)$ $t\bar{t}H(\tau^+\tau^-)$ $t\bar{t}H(b\bar{b})$ 7+8 TeV 13 TeV Combined $\mu_{t\bar{t}H}^3$

PRL 120 (2018) 231801

Status theory

Handbook of LHC Higgs cross sections:

4. Deciphering the nature of the Higgs sector Report of the LHC Higgs Cross Section Working Group `16

LHC @13 TeV

$$\sigma = 48.58 \, \mathrm{pb}_{-3.27 \, \mathrm{pb} \, (-6.72\%)}^{+2.22 \, \mathrm{pb} \, (+4.56\%)}$$
 (theory) $\pm 1.56 \, \mathrm{pb} \, (3.20\%)$ (PDF+ α_s).

$$48.58 \, \mathrm{pb} = 16.00 \, \mathrm{pb} \qquad (+32.9\%) \qquad (\mathrm{LO}, \mathrm{rEFT}) \\ + 20.84 \, \mathrm{pb} \qquad (+42.9\%) \qquad (\mathrm{NLO}, \mathrm{rEFT}) \\ - 2.05 \, \mathrm{pb} \qquad (-4.2\%) \qquad ((t, b, c), \, \mathrm{exact} \, \mathrm{NLO}) \\ + 9.56 \, \mathrm{pb} \qquad (+19.7\%) \qquad (\mathrm{NNLO}, \mathrm{rEFT}) \\ + 0.34 \, \mathrm{pb} \qquad (+0.7\%) \qquad (\mathrm{NNLO}, 1/m_t) \\ + 2.40 \, \mathrm{pb} \qquad (+4.9\%) \qquad (\mathrm{EW}, \, \mathrm{QCD-EW}) \\ + 1.49 \, \mathrm{pb} \qquad (+3.1\%) \qquad (\mathrm{N}^3 \mathrm{LO}, \, \mathrm{rEFT})$$

Status theory

Higgs Physics at the HL-LHC and HE-LHC Report from Working Group 2 on the Physics of the HL-LHC, and Perspectives at the HE-LHC `19

- Missing higher-order effects of QCD corrections beyond N3LO (δ (scale)).
- Missing higher-order effects of electroweak and mixed QCD-electroweak corrections at and beyond O(α_s α) (δ (EW)).
- Effects due to finite quark masses neglected in QCD corrections beyond NLO ($\delta(t,b,c)$ and $\delta(1/mt)$)
- Mismatch in the perturbative order of the parton distribution functions (PDF) evaluated at NNLO and the perturbative QCD cross sections evaluated at N3LO (δ (PDF-TH)).

Top quark mass & inclusive cross section gg -> H + X

Exploiting the large mass expansion

RH, Ozeren, `09 RH, Neumann, Ozeren, M. Wiesemann, `12 RH, Mantler, S. Marzani, K. Ozeren, `10 Marzani, Ball, Del Duca, Forte, Vicini `08 Pak, Rogal, Steinhauser `10

Top quark mass & inclusive cross section gg -> H + X

...and the high-energy limit

RH, Ozeren, `09 RH, Neumann, Ozeren, M. Wiesemann, `12 RH, Mantler, S. Marzani, K. Ozeren, `10 Marzani, Ball, Del Duca, Forte, Vicini `08 Pak, Rogal, Steinhauser `10

$$\Delta_{gg}(N, \tau, \mu_{\rm F}) = h(0, \tau, \gamma_s, \gamma_s) R^2(\gamma_s) \left(\frac{M_H^2}{\mu_{\rm F}^2}\right)^{2\gamma_s}$$

$$h(N,\tau,M_1,M_2) = M_1 M_2 \int_0^1 d\zeta \zeta^{N-1} \int_0^\infty d\xi_1 \xi_1^{M_1-1} \int_0^\infty d\xi_2 \xi_2^{M_2-1} \int_0^{2\pi} \frac{d\varphi}{2\pi}$$
$$M_H^2 \sigma^{\text{off}}(\zeta,\tau,\xi_1,\xi_2,\varphi),$$

$$R = 1 + \mathcal{O}\left(\left(\frac{\alpha_s}{N}\right)^3\right)$$

$$\xi_i = \frac{|\mathbf{k}_i|^2}{M_H^2}, \quad \zeta = \frac{M_H^2}{2(k_1 \cdot k_2 - \mathbf{k}_1 \cdot \mathbf{k}_2)}$$

$$M_1 = M_2 = \gamma_s \left(\frac{\alpha_s}{N}\right) \qquad \qquad \gamma_s \left(\frac{\alpha_s}{N}\right) = \sum_{k=1}^{\infty} c_k \left(\frac{C_A \alpha_s}{\pi N}\right)^k, \quad c_k = 1, 0, 0, 2\zeta(3), \dots$$

- Extend beyond leading high-energy behavior?
- How about threshold behavior?

Complicated two-loop amplitudes

• Exact numerical result using sector decomposition for two-loop amplitudes Jones, Kerner, Luisioni `18

 Results using full two-loop amplitudes for nearly massless top quarks and exact real radiation Lindert, Kudashkin, Melnikov, Wever `18

Exact two-loop amplitudes in the planar approximation

Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov `16

Exact two-loop amplitudes and some non-planars

Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov `18

Elliptic polylogs

$$A_{66}|_{\text{max cut}} \propto \int \frac{dz}{s\sqrt{P_{4;1}(z)}}$$

$$A_{66}|_{\text{max cut}} \propto \int \frac{dz}{s_3 \sqrt{P_{4:1}(z)}}$$
 $P_{4;1} \equiv \left((m_H^2 + z)^2 - 4m_H^2 m_t^2 \right) \left(4m_t^2 t u/s + (t+z)^2 \right)$

Top-bottom-loop interference for Higgs + jet

Lindert, Melnikov, Tancredi, Wever `17

Integrate to obtain the effect on the inclusive cross section?

Cross sections with mass effects: summary

 3-loop 3-points amplitudes and 2-loop 4-point amplitudes allow to evaluate the missing mass effects at NNLO by means of a direct Monte Carlo integration using an NNLO subtraction scheme, e.g. STRIPPER MC `10, MC and Heymes `14

Do we have to wait for the complete analytic results?

Numerical solution of differential equations

• Example: top-quark pair production in hadron collisions

- Numerical solution of differential equations
- Example: top-quark pair production in hadron collisions

MC `08 Bärnreuther, MC, Fiedler `14 Chen, MC, Poncelet `18

$$m_s \frac{\partial}{\partial m_s} \vec{I}(m_s, x, \epsilon) = A^{(m_s)}(m_s, x, \epsilon) \vec{I}(m_s, x, \epsilon)$$
$$x \frac{\partial}{\partial x} \vec{I}(m_s, x, \epsilon) = A^{(x)}(m_s, x, \epsilon) \vec{I}(m_s, x, \epsilon)$$

- Numerical solution of differential equations
- Example: top-quark pair production in hadron collisions

MC `08 Bärnreuther, MC, Fiedler `14 Chen, MC, Poncelet `18

$$m_s \frac{\partial}{\partial m_s} \vec{I}(m_s, x, \epsilon) = A^{(m_s)}(m_s, x, \epsilon) \vec{I}(m_s, x, \epsilon)$$
$$x \frac{\partial}{\partial x} \vec{I}(m_s, x, \epsilon) = A^{(x)}(m_s, x, \epsilon) \vec{I}(m_s, x, \epsilon)$$

Numerical solution of differential equations

• Example: Rare B-meson decays

Boughezal, MC, Schutzmeier `07 MC, Fiedler, Huber, Misiak, Schutzmeier, Steinhauser `15 Misiak et al `15

One last question...

How to renormalize the bottom Yukawa coupling?

Hints from subleading Sudakov resummation? Melnikov, Penin `16

Conclusions

- In principle, one can obtain both total and differential cross sections using purely numerical methods
- However, there is potential for physical insight by analytic methods in high-energy, threshold and other regimes
- Progress expected through synergy between the two approaches

Conclusions

Links to other projects:

 A1b - Higgs boson physics with higher order QCD corrections within the Higgs Effective Theory

 A3b - Precision predictions for Higgs boson properties as a probe for New Physics

- B1a Production of colour-singlet final states through N3LO QCD
- B1b Precision top-quark physics at the LHC

Methodologically related to:

Subtraction methods
Massive virtual amplitudes
Evaluation of master integrals
A1a, B1a
A3b, B1b
C1a, C1b

Relevant input to Higgs-boson physics analyses:

• Bottom-mass effects in BSM theories A3a, A3b

• Mass effects in Higgs-boson production

A1b

