

C1b: $B - \overline{B}$ mixing, CP violation, and Lifetimes

Matthias Steinhauser | CRC meeting, Karlsruhe, March 18-19, 2019

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

C1b: $B - \overline{B}$ mixing, CP violation, and Lifetimes

- PI: Ulrich Nierste Matthias Steinhauser
- Postdoc: Vladyslav Shtabovenko
- PhD: Marvin Gerlach
- Guests: Artyom Hovhannisyan, ...

Framework and aims

SM

- (inclusive) B and D decays:
 lifetime differences between heavy hadrons (Q = b, c, q = u, d, s)
 semileptonic CP asymmetries of B_d and B_s decays
- origin: $B_d \overline{B}_d$ and $B_s \overline{B}_s$ mixing
- HQE: expansion in α_s and Λ_{QCD}/m_b
 "Wilson coefficients" × "matrix element"
- NNLO [3 loops, $\mathcal{O}(\alpha_s^2)$] for leading power of HQE
- NLO $\Lambda_{\rm QCD}/m_b$ [2 loops, $\mathcal{O}(\alpha_s \Lambda_{\rm QCD}/m_b)$]

Lifetime differences

Λ

Strucutre of theory predictions:

$$\Delta\Gamma \propto \frac{1}{m_b^3} \sum_j \left(\frac{\alpha_s}{4\pi}\right)^j \Gamma_3^{(j)} + \frac{1}{m_b^4} \sum_j \left(\frac{\alpha_s}{4\pi}\right)^j \Gamma_4^{(j)} + \dots$$

$$\Delta B = 2: B_q \leftrightarrow \overline{B}_q, (\overline{b}, q) \leftrightarrow (b, \overline{q})$$

time evolution of (B_q, \overline{B}_q) system $(q = d, s)$:

$$i\frac{\partial}{\partial t}\left(\begin{array}{c}B\\B\end{array}\right) = \left(M - i\frac{\Gamma}{2}\right)\left(\begin{array}{c}B\\B\end{array}\right)$$

mass matrix: *M* decay matrix: Γ M_{12} : dispersive part of $(M - i\Gamma/2)_{12}$ $\Gamma_{12}/2$: absorptive part of $(M - i\Gamma/2)_{12}$

Lifetime differences

Strucutre of theory predictions:

$$\Delta\Gamma \propto \frac{1}{m_b^3} \sum_j \left(\frac{\alpha_s}{4\pi}\right)^j \Gamma_3^{(j)} + \frac{1}{m_b^4} \sum_j \left(\frac{\alpha_s}{4\pi}\right)^j \Gamma_4^{(j)} + \frac{1}{5}$$

- $\Delta B = 2$: $B_q \leftrightarrow \overline{B}_q$, $(\overline{b}, q) \leftrightarrow (b, \overline{q})$ time evolution of (B_q, \overline{B}_q) system (q = d, s): M_{12} : dispersive part of $(M - i\Gamma/2)_{12}$ $\Gamma_{12}/2$: absorptive part of $(M - i\Gamma/2)_{12}$
- diagonalize $M i\Gamma/2 \Rightarrow$ eigenvalues: $M_L i\Gamma_L/2$, $M_H i\Gamma_H/2$
 - $r \gg$ mass and width of B_L and B_H ("light" and "heavy")
 - \Rightarrow mass difference $\Delta M = M_H M_L = 2|M_{12}|$ and
 - r width difference $\Delta \Gamma = \Gamma_L \Gamma_H$; $\frac{\Delta \Gamma}{\Delta M} = -\text{Re} \frac{\Gamma_{12}}{M_{12}} \simeq \frac{|\Gamma_{12}|}{|M_{12}|}$

CP asymmetry

 CP asymmetry in flavour-specific decays ("semi-leptonic CP asymmetry"):

$$r \Rightarrow \qquad a_{\rm fs} = \frac{\Gamma(\overline{B} \to f) - \Gamma(B \to f)}{\Gamma(\overline{B} \to f) + \Gamma(B \to f)} = \operatorname{Im} \frac{\Gamma_{12}}{M_{12}} \qquad r \Rightarrow \qquad \text{``small''}$$

- quantifies CP violation in B B mixing measured in semileptonic decays
- SM: relative phase between M_{12} and $(-\Gamma_{12})$ is tiny

mass difference $\Delta M = M_H - M_L = 2|M_{12}|$ and width difference $\Delta \Gamma = \Gamma_L - \Gamma_H$; $\frac{\Delta \Gamma}{\Delta M} = -\text{Re} \frac{\Gamma_{12}}{M_{12}} \simeq \frac{|\Gamma_{12}|}{|M_{12}|}$

Physical quantities in C1b

•
$$\Delta B = 2$$
: $B_q - \overline{B}_q$ mixing
• $\Gamma_{12}^s \Rightarrow \Delta \Gamma_s$
• $\Gamma_{12}^d \Rightarrow \Delta \Gamma_d$
• $\Delta B = 0$: lifetime splittings in [SU(3)_F]
• $(B^+, B_d, B_s) \sim (\overline{b}u, \overline{b}d, \overline{b}s)$
• $(\Xi_b^-, \Xi_b^0, \Lambda_b) \sim (dsb, usb, udb)$
• charmed mesons and baryons

• $a_{\rm fs}^d$ (and $a_{\rm fs}^s$)

Theoretical background

$$\begin{aligned} H^{|\Delta B|=1} &= \frac{G_F}{\sqrt{2}} \sum_{j=1}^{2} C_j \left[V_{cb} V_{cq}^* Q_j^{cc} + V_{cb} V_{uq}^* Q_j^{cu} \right. \\ &+ V_{ub} V_{cq}^* Q_j^{uc} + V_{ub} V_{uq}^* Q_j^{uu} \right] \\ &- \frac{G_F}{\sqrt{2}} V_{tb} V_{tq}^* \left[\text{"penguin operators"} \right] \end{aligned}$$

 $u', u'' \in \{u, c\}$

$$\boldsymbol{Q_1}^{u'u''} = \bar{u}_L' \gamma_\mu T^a \boldsymbol{b}_L \, \bar{q}_L \gamma^\mu T^a \boldsymbol{u}_L'' \qquad \boldsymbol{Q_2}^{u'u''} = \bar{u}_L' \gamma_\mu \boldsymbol{b}_L \, \bar{q}_L \gamma^\mu \boldsymbol{u}_L''$$

RG-improved Hamiltonian to NNLO: [Gorbahn,Haisch'05]

Calculation of $\Delta \Gamma_s$

$$\Gamma_{12}^{q} = \frac{1}{2M_{B_{s}}} \operatorname{Abs} \langle B_{q} | i \int d^{4}x \ T \ H^{|\Delta B|=1}(x) H^{|\Delta B|=1}(0) |\overline{B}_{q} \rangle$$

$$\int_{b}^{q} \int_{c_{0}}^{u,c} \int_{a}^{b} \Gamma_{12}^{q} = -\left[\left(\lambda_{c}^{q}\right)^{2} \Gamma_{12}^{cc} + 2\lambda_{c}^{q} \lambda_{u}^{q} \Gamma_{12}^{uc} + \left(\lambda_{u}^{q}\right)^{2} \Gamma_{12}^{uu}\right]$$

• $\Delta\Gamma_s$: $|\lambda_u^s| = |V_{us}^{\star}V_{ub}| \ll |V_{cs}^{\star}V_{cb}| = |\lambda_c^s| \Rightarrow \Gamma_{12}^{cc}$ most important • $\Delta\Gamma_d$ and a_{ls}^d : also Γ_{12}^{uc} und Γ_{12}^{uu} needed

$$\Gamma_{12}^{ab} = \frac{G_F^2 m_b^2}{24\pi M_{B_s}} \left[\widetilde{G}^{ab} \langle B_s | Q | \overline{B}_s \rangle + \widetilde{G}_S^{ab} \langle B_s | \widetilde{Q}_S | \overline{B}_s \rangle \right] + \widetilde{\Gamma}_{12,1/m_b}^{ab}$$

Calculation of $\Delta \Gamma_s$ (2)

$$\Gamma_{12}^{ab} = \frac{G_F^2 m_b^2}{24\pi M_{B_s}} \left[\widetilde{G}^{ab} \langle B_s | Q | \overline{B}_s \rangle + \widetilde{G}_S^{ab} \langle B_s | \widetilde{Q}_S | \overline{B}_s \rangle \right] + \widetilde{\Gamma}_{12,1/m_b}^{ab}$$

leading power ("Γ₃")

$$Q = \bar{\mathbf{s}}_i \gamma_\mu (1 - \gamma_5) \boldsymbol{b}_i \ \bar{\mathbf{s}}_j \gamma^\mu (1 - \gamma_5) \boldsymbol{b}_j;$$
$$\widetilde{Q}_S = \bar{\mathbf{s}}_i (1 + \gamma_5) \boldsymbol{b}_j \quad \bar{\mathbf{s}}_j (1 + \gamma_5) \boldsymbol{b}_j$$

• subleading power (" Γ_4 ", $\widetilde{\Gamma}_{12,1/m_b}^{ab}$): 5 operators

Numerical results for $\Delta \Gamma_s$

- $\langle B_s | Q | \overline{B}_s \rangle$ and $\langle B_s | \widetilde{Q}_S | \overline{B}_s \rangle$: lattice [Fermilab lattice and MILC, Bazavov et al.'16]
- Γ^{CC}₁₂, NLO (2 loops) [Beneke,Buchalla,Greub,Lenz,Nierste'99; Lenz,Nierste'07]
- Γ^{CC}₁₂, fermionic NNLO [Asatrian,Hovhannisyan,Nierste,Yeghiazaryan'17]
- $\widetilde{\Gamma}_{12,1/m_b}^{ab}$ [Beneke,Buchalla,Dunietz'96]

Numerical results for $\Delta \Gamma_s$

- $\langle B_s | Q | \overline{B}_s \rangle$ and $\langle B_s | \widetilde{Q}_S | \overline{B}_s \rangle$: lattice [Fermilab lattice and MILC, Bazavov et al. 16]
- Γ^{CC}₁₂, NLO (2 loops) [Beneke,Buchalla,Greub,Lenz,Nierste'99; Lenz,Nierste'07]
- Γ^{CC}₁₂, fermionic NNLO [Asatrian, Hovhannisyan, Nierste, Yeghiazaryan'17]
- $\widetilde{\Gamma}_{12,1/m_b}^{ab}$ [Beneke,Buchalla,Dunietz'96]

$$\begin{split} \Delta \Gamma_s &= \left(0.0913 \pm 0.020_{\rm scale} \pm 0.006_{\rm lattice} \pm 0.017_{1/m_b} \right) \, \text{ps}^{-1} \qquad \text{(pole)} \\ \Delta \Gamma_s &= \left(0.104 \ \pm 0.008_{\rm scale} \pm 0.007_{\rm lattice} \pm 0.015_{1/m_b} \right) \, \text{ps}^{-1} \qquad (\overline{\rm MS}) \end{split}$$

$$\Delta \Gamma_s^{exp} = (0.089 \pm 0.006) \, \text{ps}^{-1}$$

Numerical results for $\Delta \Gamma_s$ and a_{fs}^d

$$\begin{split} \Delta \Gamma_s &= \begin{pmatrix} 0.0913 \pm 0.020_{\rm scale} \pm 0.006_{\rm lattice} \pm 0.017_{1/m_b} \end{pmatrix} \, \text{ps}^{-1} \qquad \text{(pole)} \\ \Delta \Gamma_s &= \begin{pmatrix} 0.104 & \pm 0.008_{\rm scale} \pm 0.007_{\rm lattice} \pm 0.015_{1/m_b} \end{pmatrix} \, \text{ps}^{-1} \qquad (\overline{\rm MS}) \end{split}$$

 $\Delta\Gamma_s^{
m exp} = (0.089 \pm 0.006)\,{
m ps}^{-1}$

Γ^{uc}₁₂, Γ^{uu}₁₂, NLO (2 loops) [Beneke,Buchalla,Lenz,Nierste'03; Ciuchini,Franco,Lubicz,Mescia,Tarantino'03] 1/m_b corrections [Dighe,Hurth,Kim,Yoshikawa'02]

theory:
$$a_{fs}^d = -(4.0 \pm 0.6) \cdot 10^{-4}$$

exp: $a_{fs}^d = -(21 \pm 17) \cdot 10^{-4}$ \Rightarrow Belle II and LHCb: sign. impr.

Numerical results for $\Delta \Gamma_s$ and a_{fs}^d

$$\begin{split} \Delta \Gamma_{s} &= \left(0.0913 \pm 0.020_{\rm scale} \pm 0.006_{\rm lattice} \pm 0.017_{1/m_{b}}\right) \ \text{ps}^{-1} \qquad \text{(pole)} \\ \Delta \Gamma_{s} &= \left(0.104 \ \pm 0.008_{\rm scale} \pm 0.007_{\rm lattice} \pm 0.015_{1/m_{b}}\right) \ \text{ps}^{-1} \qquad (\overline{\rm MS}) \end{split}$$

$$\Delta\Gamma_s^{
m exp} = (0.089 \pm 0.006) \, {
m ps}^{-1}$$

theory: $a_{fs}^{d} = -(4.0 \pm 0.6) \cdot 10^{-4}$ exp: $a_{fs}^{d} = -(21 \pm 17) \cdot 10^{-4}$ \Rightarrow Belle II and LHCb: sign. impr.

•
$$\Delta \Gamma_d$$
: LHCb via $\tau(B \rightarrow J/\psi K_S)$

a^s_{fs} too small to be ever probed experimentally

Matthias Steinhauser — C1b: $B - \overline{B}$ mixing, CP violation, and Lifetimes — CRC meeting, Karlsruhe

Other lifetime differences

- $(B^+,B_d,B_s)\sim (ar{b}u,ar{b}d,ar{b}s)$ $(\Xi^-_b,\Xi^0_b,\Lambda_b)\sim (dsb,usb,udb)$
 - $\tau(B^+)/\tau(B_d)$: Weak Annihilation (WA), Pauli Interference (PI)
 - $\tau(B_s)/\tau(B_d)$
 - cancellation from $Q_{1,2}^{cc}$ and $Q_{1,2}^{cu} \stackrel{cu}{\rightarrowtail} \tau(B_s)/\tau(B_d) \approx 1$
 - r penguin effects [contribute to $\tau(B_s)$ but not $\tau(B_d)$] important [Keum,Nierste'98]
 - $(\Xi_b^-, \Xi_b^0, \Lambda_b)$
 - experiment:
 - $au(\Xi_b^0)/ au(\Xi_b^-) 1 = -0.071 \pm 0.028 \ au(\Xi_b^0) \simeq au(\Lambda_b)$
 - perturbative input as for (B^+, B_d, B_s)
 - charmed hadrons: (D^+, D^0, D_s^+)
 - experiment: precisely measured lifetimes
 - theory: NLO and $1/m_c$: adapt from *B* system [Lenz,Rauh'13]
 - poorly known hadronic matrix elements
 - α_s/m_c corrections important

Sensitivity to new physics

- needed: small (non-perturbative) uncertainties
- $\Delta \Gamma_s$: robust ΔM_s : sensitive to New Physics

$$\frac{\Delta I_s}{\Delta M_s} = (46 + 11r \pm 4.3_{\text{pert}}) \cdot 10^{-4} + \delta_{1/m_b} + \dots$$

$$r = 1.09 \pm 0.16$$
[Bazavov'16] ratio of hadronic matrix elements

- r distinguish New Physics in ΔM_s from "unknown unknowns" of lattice calculations
- a_{fs}^d and $\Delta \Gamma_d$ "small" r > sensitive to NP
- $(B^+, B_d, B_s), (\Xi_b^-, \Xi_b^0, \Lambda_b)$ test HQE formalism

and lattice and sum rules calculations on MEs

 $au(B_s)/ au(B_d)pprox$ 1, $au(\Xi_b^0)/ au(\Lambda_b)pprox$ 1

r sensitive to NP in penguin operators (C_4)

Plan

- 1.) Γ_{12}^s and Γ_{12}^d to NNLO for $m_c = 0$
 - ⇒ reduce perturbative uncertainty of leadingpower contribution to $\Delta\Gamma_s$: ~10% → ~3%
- 2.) Γ_{12}^s and Γ_{12}^d to $\mathcal{O}(\alpha_s/m_b)$
 - $rac{10\%}{r}$ reduce uncertainty in $\Delta\Gamma_q/M_q$ below 10%
- 3.) $\tau(B^+)/\tau(B_d)$ and $\tau(\Xi_b^0)/\tau(\Xi_b^-)$ at $\mathcal{O}(\alpha_s^2)$ and $\mathcal{O}(\alpha_s/m_b)$
 - Itest formalism; HQE and lattice
- 4.) Charm lifetimes
 - \Rightarrow test HQE at order $1/m_Q$
- 5.) $\tau(B_s)/\tau(B_d)$ and $\tau(\Lambda_b)/\tau(\Xi_b^0)$
 - pengiuns important

6.) Γ_{12}^{s} and Γ_{12}^{d} to NNLO, $\mathcal{O}(m_{c}^{2}/m_{b}^{2})$ \Rightarrow NNLO accuracy for a_{fs}^{d}

... + phenomenological studies ...

Technical issues

- 3-loop integrals, q_{light quark} → 0
 ⇒ 2-point function
 - $rac{}{\sim}$ 2 masses: m_b and m_c consider $m_c^2 \ll m_b^2$
- redcution to MIs: FIRE6 [Smirnov'19], LiteRed [Lee'13'14]
- "phase-space MIs"

Connection to other projects

Summary

- $\Delta \Gamma_s, \Delta \Gamma_d, a_{\rm fs}^d; \Delta B = 2, \Delta B = 0$
- theory uncertainties > experimental errors
- NLO perturbative uncertainty \gtrsim hadronic uncertainty
- NNLO and NLO $\Lambda_{\rm QCD}/m_b$
- same technique (HQE) but different sensitivity to new physics
 simultaneously test formalism and probe new physics