

NEW PHYSICS IN TOP-QUARK OBSERVABLES

Project B2b

Susanne Westhoff Heidelberg University

Kickoff meeting CRC-TRR 257 — March 18-19, 2019 — KIT, Karlsruhe

Project B2b

goal: a global analysis of new physics with top-quarks

in LHC and flavor observables

in the framework of an effective theory

principal investigator: Susanne Westhoff (HD)

participating scientists: Oscar Cata (SI)

Thorsten Feldmann (SI)

Thomas Mannel (SI)

Tilman Plehn (HD)

CRC-funded postdoc: Sebastian Bruggisser (HD)

and several CRC-internal and -external contributors

Physics At Different Scales

Physics At Different Scales

Beyond The Weak Scale

Beyond The Weak Scale

Data suggests that new physics is

- a) very heavy
- b) well secluded

The Top Link

example: weak charged current

Effective Field Theory

- gauge-invariant
- model-independent
- comprehensive

$$\mathcal{L}_f = ???$$

$$\mathcal{L}_t = \sum_i \frac{C_i}{\Lambda^2} O_i + \dots$$

matching and RG evolution

$$\mathcal{L}_w = \sum_j rac{\mathcal{C}_j}{\Lambda^2} \mathcal{O}_j + \dots$$

fundamental theory

top effective theory

weak effective theory

Global Top Data Analysis

Theory guidelines

Durieux, Plehn, Westhoff et al. 2018

- dim-6 operators with tops at NLO QCD (Warsaw basis)
- flavor symmetry $U(2)_q \times U(2)_u \times U(2)_d$

Hartland et al. 2019

Top fits today probe scales comparable with direct LHC reach.

Sensitive Top Observables

Top-antitop production: high precision in prediction and observation.

$$O_{tG} = (\overline{Q}\sigma^{\mu\nu}T^At)\widetilde{H}G^A_{\mu\nu}$$
$$O_V = (\overline{q}\gamma_\mu q)(\overline{t}\gamma^\mu t)$$

sensitivity grows with energy

$$\sigma_{t\bar{t}} \stackrel{s \gg m_t^2}{\longrightarrow} \frac{a}{s} + b \frac{C_{tG}}{\Lambda^2} \frac{v}{\sqrt{s}} + c \frac{C_V}{\Lambda^2}$$

Look at tails of distributions

B1b: Precise top observables

and high-pT searches for NP.

Top and Higgs

Higgs inclusive: NLO QCD: Deutschmann et al. 2017

$$\mu_{ggh} - 1 \sim 2.28 C_{tG} + 114 C_{GH} - 0.128 C_{tH}$$

Higgs transverse momentum:

$$C_{tG} \longleftrightarrow \{C_{GH}, C_{tH}\}$$
 A1b: Higgs EFT

 $O_{tG} = (\overline{Q}\sigma^{\mu\nu}T^At)\widetilde{H}G^A_{\mu\nu}$ $O_{GH} = (H^{\dagger}H)(G_{\mu\nu}G^{\mu\nu})$ $O_{tH} = (H^{\dagger}H)(\overline{Q}\widetilde{H}t)$ strong mixing under RGE

global analysis Higgs & EW: Biekoetter, Corbett, Plehn 2018

A2a: Higgs & EW global

top-antitop inclusive: $\sigma_{t\bar{t}} \sim C_{tG} + ...$

top-antitop-Higgs: $\sigma_{t\bar{t}h} \sim C_{tH} + C_{tG}$

Bramante, Delgado, Martin 2014

NLO QCD: Maltoni, Vryonidou, Zhang 2016

Towards A Precise Top Fit

using SFitter: Lafaye, Plehn, Rauch, Zerwas 2004+

single top production and decay

omigra sep production area areasy				
process	experiment	energy [TeV]	observable	$N_{\rm dat}$
single t s-channel	CMS	7	$\sigma_{\mathrm{tot}}(t+\bar{t})$	1
	CMS	8	$\sigma_{\mathrm{tot}}(t+ar{t})$	1
single t t-channel	ATLAS	7	$\mathrm{d}\sigma_{\mathrm{tot}}(t)/\mathrm{d}p_T^t$	5
			$\mathrm{d}\sigma_{\mathrm{tot}}(ar{t})/\mathrm{d}p_{T}^{ar{t}}$	5
	ATLAS	8	$\mathrm{d}\sigma_{\mathrm{tot}}(t)/\mathrm{d}y_t$	4
			$\mathrm{d}\sigma_{\mathrm{tot}}(\bar{t})/\mathrm{d}y_t$	4
	CMS	13	$\mathrm{d}\sigma/\mathrm{d}p_T^{t+\bar{t}}$	4
tW	CMS	7	$\sigma_{\mathrm{tot}}(tW)$	1
	ATLAS	8	$\sigma_{\mathrm{tot}}(tW)$	1
	CMS	13	$\sigma_{\rm fid}(Wbl^+l^-q)$	1
t decay	ATLAS	7	F_L	1
			F_R	1
	ATLAS	8	F_L	1
			F_R	1

$$O_{tW} = (\overline{Q}\sigma^{\mu\nu}\tau^a t)\widetilde{H}W^a_{\mu\nu}$$

$$O_{Qq} = (\bar{q}\gamma^{\mu}Q)(\overline{Q}\gamma_{\mu}q) - (\bar{q}\gamma^{\mu}\tau^{a}Q)(\overline{Q}\gamma_{\mu}\tau^{a}q)$$

Top And Hidden New Physics

Higgs-scalar mixing

A3a: Extended Higgs sectors

B3a: Dark sectors

Top And Hidden New Physics

Higgs-scalar mixing

A3a: Extended Higgs sectors

B3a: Dark sectors

Plehn, Thompson, Westhoff 2017

LHC:

top and missing energy

BELLE II:

C3a: Flavor at high pT

B to K and missing energy

C3b: New physics in flavor observables

Ready To Discuss

Top observables: High sensitivity / precision — where and how?

Top and Higgs: Consistent combination of fits?

Top and Flavor: Useful flavor patterns?

• Beyond effective theory: Combine indirect and direct searches?