Project C2a

Hadronic Matrix Elements and Exclusive Semileptonic Decays

Thorsten Feldmann and Thomas Mannel

CRC Kick-Off Meeting, 18./19. March 2019

Many different decay modes, e.g.

- charged and neutral leptonic decays $(B_{\mu,c} \to \ell\nu, B_{s,d} \to \mu^+\mu^-, B \to \nu\nu, ...)$
- exclusive and inclusive semileptonic $b \to u(c)$ decays $(B \to X_{U,C}\ell_V, B \to D^{(*)}\ell_V, B \to \pi\ell_V, B \to \pi\pi\ell_V, B_S \to K\pi\ell_V, \Lambda_D \to p\ell_V, \ldots)$
- radiative and semileptonic FCNC decays $(B \to X_s \gamma, B \to \rho \gamma, B \to K^{(*)} \mu^+ \mu^-, B_s \to \phi \mu^+ \mu^-, \Lambda_b \to \Lambda \mu^+ \mu^-, B \to K \nu \nu, \ldots)$
- non-leptonic decays with or without charm $(B \to J/\psi K, B \to \pi\pi, B \to K\pi, B \to \pi\pi\pi, ...)$

Many decay modes are suppressed by CKM- and/or loop factors ⇒ particular sensitivity to (indirect) NP effects!

The Power of *b*-Hadron Physics

Many different observables, e.g.

- lifetimes and mixing parameters
- (partially) integrated decay rates
- (moments of) decay spectra, Dalitz distributions
- forward-backward asymmetries
- direct and mixing-induced CP asymmetries
- angular distributions and polarization fractions

Some observables are small or even vanish in the SM

⇒ particular sensitivity to (indirect) NP effects!

The Challenges of *b*-Hadron Physics

Hadronic Uncertainties

- hadronic bound-state effects obscure underlying short-distance physics
- many process-dependent exclusive decay amplitudes that describe non-perturbative QCD dynamics

Idea: Factorization / EFT

- decaying b-quark is heavy compared to Λ_{QCD}
- final states often involve (relatively) energetic particles (i.e. $E \sim m_b/2$)
- different hadronic amplitudes can be expanded in terms of a handful of more fundamental (i.e. process-independent) quantities. also: control large logarithms in QCD perturbation theory

Particularly important:

- Large energy ↔ propagation close to the light-cone
- ⇒ hadronic matrix elements of non-local operators

Outline

- Scope / Work Areas
- Participating Scientists / Recruitment
- Preliminary Work / Status of Subprojects
- 4 Recent Results Example from WA1
- Outlook

1. Scope / Work Areas

- reliable predictions for exclusive $b \to c\ell\nu$ and $b \to u\ell\nu$ transitions
- precision determinations of $|V_{cb}|$ and $|V_{ub}|$
- refined theoretical methods for hadronic input parameters

Work Area 1: Factorization and light-cone distribution amplitudes

Work Area 2: Theoretical development of QCD sum rules and related methods

Work Area 3: New channels and multi-hadron final states

Work Area 4: Inclusive rate from the sum over exclusive channels

- WA1 and WA3 will be coordinated by TF
- WA2 and WA4 will be coordinated by TM

2. Participating Scientists / Recruitment

Name	Position	Work Areas	Start – End	Affiliation
Yao Ji	Postdoc	WA1, WA4	Oct 19 –	SI
[N.N.]*	PhD Student	WA2, WA3	mid 19 –	SI
Björn O. Lange	Akad. Rat	WA1, WA4	permanent	SI

Additional personnel:

Alex Khodjamirian	Senior Prof.	WA2	– Dec 21	SI
Kevin Olschewsky	PhD Student	WA2, WA4	Feb 19 –	SI

^{* (}candidate comes for a presentation talk in the first week of april ...)

WA1: Factorization and LCDAs

Preliminary Work

QCD factorization in exclusive B decays:

[Böer 18 [thesis]] [Böer/TF/van Dyk 17] [Beneke/TF 04] [BOL/Neubert 04] [Beneke/TF 00]

Properties of B-meson LCDAs:

[TF/BOL/Wang 14] [Bell/TF/Wang/Yip 13] [Bell/TF 08] [Khodiamirian/TM/Offen 07] [BOL/Neubert 03]

Pending QFET Projects

Resummation of rapidity logs in exclusive decays

[Bell/TF/Böer/BOL]

Renormalization of B-meson LCDA at 2-loop

[Bell/Dehnadi/BOL/Piclum]

Current P3H Activities

 improved parametrizations of B-meson LCDA preliminary results (see below)

[TF/van Dyk]

• parametrizations for higher-twist B-meson LCDAs

[TF/van Dyk]

WA2: QCD sum rules and related methods

Preliminary Work

- $B \rightarrow \gamma \ell \nu$ transition: [Braun/Khodjamirian 13]
- $B \to \pi \ell \nu$ transition: [Imsong/Khodjamirian/TM/van Dyk 15] [Khodjamirian/TM/Offen/Wang 11] [De Fazio/TF/Hurth 07] [Khodjamirian/TM/Offen 06] [De Fazio/TF/Hurth 05]
- $B o \pi \pi \ell \nu$ transition: [Cheng/Khodjamirian/Virto 17 (2x)] [Hambrock/Khodjamirian 16]
- semi-leptonic Λ_b decays: [Khodjamirian/Klein/TM/Wang 11] [TF/Yip 11]
- exclusive $b \rightarrow c$ transitions: [TM/van Dyk 15]

Pending QFET Projects

• isoscalar contribution to the $B \to \pi\pi$ form factor

[Khodjamirian/Virto/Vos]

• vector contribution to the $B \to \pi K$ form factors

[Khodjamirian/Virto]

Current P3H Activities

• phenomenological re-analysis of $B o \gamma \ell \nu$

[TF/van Dyk; using results from WA1]

• a new QCD sum rule for B_c processes

[Khodjamiran/TM]

Th. Feldmann C2a 7 / 19

WA3: New channels and multi-hadron final states

Preliminary Work

- phenomenology of $B_{(s)} \to M_1 M_2 \ell \nu$ decays [TF/van Dyk/Vos 18] [TF/Müller/van Dyk 15] [Faller/TF/Khodjamirian/TM/van Dyk 13]
- phenomenology of Λ_b decays
 [TM/Wang 11]

Current P3H Activities

- PhD project K. Olschewsky: "Multibody B-decays"
- phenomenological analysis of $B_c o J/\Psi \ell \bar{\nu}$

[Khodjamiran/TM/Kellermann]

WA4: Inclusive rate from sum over exclusive rates

Preliminary Work

- phenomenological analysis of $B \to D$, D^* , D^{**} effects: [TM/Rusov/Shahriaran 17] [Klein/TM/Shahriaran/van Dyk 15]
- differential decay spectra of charmless inclusive B decays: [BOL/Neubert/Paz 05]

Current P3H Activities

... waiting for postdoc to arrive in october ...

4. Recent Results from WA1

"Systematic parametrization of the B-meson LCDAs"

[TF, van Dyk (in preparation)]

LCDA of the B-Meson

Parton picture: 2-particle Fock state

- Some external light-like momentum, e.g. $p_{\gamma}^{\mu} = E_{\gamma} n^{\mu}$, $n^2 = 0$
- with $\omega \equiv n \cdot k$ light-cone projection of light antiquark momentum
- $\phi_B(\omega)$ as probability amplitude
- Field theoretical definition of $\phi_B^+(\omega)$ from light-cone operators in HQET:

$$m_{B}f_{B}^{(\mathrm{HQET})}\;\phi_{B}^{+}(\omega) = \int rac{d au}{2\pi}\;e^{i\omega au}\;\langle 0|\,ar{q}(au n)\;[au n,\,0]\,\dot{p}_{\gamma 5}\;h_{v}^{(b)}(0)\,|ar{B}(m_{B}v)
angle$$

[Grozin/Neubert]

LCDA of the B-Meson

Parton picture: 2-particle Fock state

- Some external light-like momentum, e.g. $p_{x}^{\mu} = E_{x} n^{\mu}$, $n^{2} = 0$
- with $\omega \equiv n \cdot k$ light-cone projection of light antiquark momentum
- $\phi_B(\omega)$ as probability amplitude

• in QCD factorization [Beneke et al.] one encounters logarithmic moments

$$L_n(\mu) = \int_0^\infty \frac{d\omega}{\omega} \ln^n\left(\frac{\mu}{\omega}\right) \phi_B^+(\omega) \quad (n=0,1,2,\ldots)$$

• in QCD light-cone sum rules, one is sensitive to low light-cone momenta

$$\phi_B^{+\prime}(0)$$
, $\phi_B^{+\prime\prime}(0)$, etc.

For large photon energy, $E_{\gamma} \sim m_b/2$:

$$\left({\color{red}
ho_{\gamma}} - {\color{red}
ho_{ar{u}}}
ight)^2 \simeq - 2\,{\color{red}
ho_{\gamma}} \cdot {\color{red}
ho_{ar{u}}} \equiv - 2\,{\color{red}
ho_{\gamma}}\,\omega$$

ullet Sensitive to light-cone projection ω of light antiquark momentum in B-meson

$$F^{B o\gamma}(E_{\gamma}) \simeq [ext{kinematic factor}] imes \int\limits_0^\infty rac{d\omega}{\omega} \, \phi_B(\omega)$$

Experimental bound on BR \longrightarrow bound on $\frac{1}{\lambda_B} \equiv \langle \omega^{-1} \rangle_B$

Th. Feldmann C2a 10 / 19

Simple Models for $\phi_B^+(\omega)$:

exponential model

$$\phi_{B}^{+}(\omega,\mu_{0}) = \frac{\omega}{\omega_{0}^{2}} \exp\left(-\frac{\omega}{\omega_{0}}\right)$$

free parton model

$$\phi_B^+(\omega,\mu_0) = \frac{\omega}{2\bar{\Lambda}^2} \theta(2\bar{\Lambda} - \omega)$$

$$\bar{\Lambda}=M_B-m_b$$

- model LCDA at μ_0
- effect of RG evolution towards higher scales

Simple Models for $\phi_B^+(\omega)$:

exponential model

$$\phi_{\mathcal{B}}^{+}(\omega,\mu_{0}) = \frac{\omega}{\omega_{0}^{2}} \exp\left(-\frac{\omega}{\omega_{0}}\right)$$

free parton model

$$\phi_B^+(\omega,\mu_0) = rac{\omega}{2ar{\Lambda}^2}\, heta(2ar{\Lambda}-\omega)$$
 $ar{\Lambda} = M_B - m_D$

Can one do better?

Complications:

Renormalization of light-cone operator in HQET non-trivial:

- local limit $\lambda \to 0$ and renormalization do not commute
- $\phi_B^+(\omega,\mu)$ exhibits a "radiative tail"
- non-negative moments of $\phi_B^+(\omega,\mu)$ become divergent

[Lange/Neubert, Lee/Neubert, Braun/Ivanov/Korchemsky]

What do we know:

tree-level constraints from HQET parameters

[Grozin/Neubert]

dim-3 and dim-4 contributions to radiative tail

[Lee/Neubert]

dim-5 contributions to radiative tail (position space)

[Kawamura et al.]

simple hadronic models

[Kawamura et al., Khodjamirian et al., Braun et al.]

• eigenfunctions of the 1-loop RG equations

[Bell/TF/Wang ; Braun/Manashov]

Th. Feldmann C2a 12 / 19

Step 1: Generic parametrization for low- ω region

$$\phi_B^+(\omega,\mu_m) \equiv \frac{\omega e^{-\omega/\omega_0}}{\omega_0^2} \sum_{k=0}^N c_k(\mu_m) L_k^{(1)} \left(\frac{\omega}{\omega_0}\right) + \text{"radiative tail" @ } \mu_m$$

- (truncated) series of associated Laguerre polynomials $L_k^{(1)}$
- ullet exponential damping for large momenta ω
- hadronic information encoded in
 - Laguerre coefficients $c_k(\mu_m)$
 - hadronic reference momentum $\omega_0 \sim \Lambda_{\rm had}$
 - reference renormalization scale $\mu_m \gg \Lambda_{QCD}$
- radiative tail will be treated separately

Step 2: The generating function:

(basically Mellin transform)

$$F_{[+]}(t, \mu_{m}) \equiv \frac{\Gamma(1-t)}{\Gamma(1+t)} \int_{0}^{\infty} \frac{d\omega}{\omega} \left(\frac{\mu e^{2\gamma_{E}}}{\omega}\right)^{-t} \phi_{B}^{+}(\omega)$$

$$= \frac{1}{\omega_{0}} \left(\frac{\mu_{m} e^{2\gamma_{E}}}{\omega_{0}}\right)^{-t} \sum_{k=0}^{N} c_{k}(\mu_{m}) \frac{\Gamma(1+k-t)}{\Gamma(1+k)} + \text{radiative tail}$$

• Logarithmic moments can be obtained by expanding around t = 0, e.g.

$$L_0(\mu_m) = \frac{1}{\omega_0} \sum_{k=0}^N c_k(\mu_m)$$
 + radiative-tail contribution

• Low-momentum behaviour from setting t = -1, -2, ..., e.g.

$$\phi_B^{+\prime}(0,\mu_m) = \frac{1}{\omega_0^2} \sum_{k=0}^N k \cdot c_k(\mu_m) + \text{radiative-tail contribution}$$

Step 2: The generating function:

(basically Mellin transform)

$$F_{[+]}(t, \mu_{m}) \equiv \frac{\Gamma(1-t)}{\Gamma(1+t)} \int_{0}^{\infty} \frac{d\omega}{\omega} \left(\frac{\mu e^{2\gamma_{E}}}{\omega}\right)^{-t} \phi_{B}^{+}(\omega)$$

$$= \frac{1}{\omega_{0}} \left(\frac{\mu_{m} e^{2\gamma_{E}}}{\omega_{0}}\right)^{-t} \sum_{k=0}^{N} c_{k}(\mu_{m}) \frac{\Gamma(1+k-t)}{\Gamma(1+k)} + \text{radiative tail}$$

• The generating function has a simple RG evolution:

$$F_{[+]}(t,\mu) = e^{V} \left(\frac{\mu}{\mu_{m}}\right)^{-t} F_{[+]}(t+g,\mu_{m})$$

where $V = V(\mu, \mu_m)$ and $g = g(\mu, \mu_m)$ are standard RG functions in SCET.

Th. Feldmann C2a 14 / 19

from perturbative analysis in the parton picture

[Lee/Neubert] [Kawamura et al.]

$$\phi_{B}^{+}(\omega, \mu_{m})\big|_{\text{radiative}} = \theta(\omega - \omega_{t}) \frac{\alpha_{s} C_{F}}{\pi \omega} \left\{ \frac{1}{2} - \ln \frac{\omega}{\mu} + \frac{4\bar{\Lambda}}{3\omega} \left(2 - \ln \frac{\omega}{\mu} \right) + \frac{1}{2\omega^{2}} + \frac{1}{2\omega$$

- HQET parameter $\bar{\Lambda} = m_B m_b$ (pole-mass scheme)
- we also included the higher-order terms from dim-5 operators, with $\lambda_{E,H}^2(\mu)$ (chromoelectric and chromomagentic terms)
- forcing ϕ_B^+ to be continuous at $\omega = \omega_t$, one sets

$$\Rightarrow \qquad \omega_t = \sqrt{e} \, \mu_m + 2 \, \bar{\Lambda} + \dots$$

Step 4: Improved Grozin-Neubert Relations

Constraints on Laguerre coefficients $c_{0,1,2}$ to 1-loop accuracy, e.g.

$$\begin{array}{lcl} c_{0}(\mu_{m}) & = & 1 + \frac{\alpha_{s}C_{F}}{4\pi} \left\{ \frac{1}{2} - \frac{\pi^{2}}{12} - \frac{8\bar{\Lambda}}{3\sqrt{e}\mu_{m}} + \ldots \right\} \\ \\ c_{1}(\mu_{m}) & = & \left(1 - \frac{2\bar{\Lambda}}{3\omega_{0}} \right) \left(1 + \frac{\alpha_{s}C_{F}}{4\pi} \left\{ \frac{1}{2} - \frac{\pi^{2}}{12} + \ldots \right\} \right) \\ & & + \frac{\alpha_{s}C_{F}}{4\pi} \left\{ - \frac{2\sqrt{e}\mu_{m}}{\omega_{0}} + \ldots \right\} \end{array}$$

naive tree-level normalization

[← Grozin/Neubert]

radiative corrections

 $[\leftarrow \text{Lee/Neubert}]$

• power corrections, requiring $\bar{\Lambda} \ll \mu_m$

[← Lee/Neubert] [← Kawamura et al.]

 \bullet power-enhanced terms \leftrightarrow renormalon ambiguity in def. of $\bar{\Lambda}$

 \Rightarrow switching to renormalon-free definition $ar{\Lambda}_{\mathrm{DA}}(\mu_{m})$

[Lee/Neubert]

Step 4: Improved Grozin-Neubert Relations

Constraints on Laguerre coefficients $c_{0.1,2}$ to 1-loop accuracy, e.g.

$$\begin{array}{lcl} c_{0}(\mu_{\text{m}}) & = & 1 + \frac{\alpha_{\text{s}}C_{\text{F}}}{4\pi} \left\{ \frac{1}{2} - \frac{\pi^{2}}{12} - \frac{8\bar{\Lambda}_{\mathrm{DA}}(\mu_{\text{m}})}{3\sqrt{e}\mu_{\text{m}}} + \ldots \right\} \\ \\ c_{1}(\mu_{\text{m}}) & = & \left(1 - \frac{2\bar{\Lambda}_{\mathrm{DA}}(\mu_{\text{m}})}{3\omega_{0}} \right) \left(1 + \frac{\alpha_{\text{s}}C_{\text{F}}}{4\pi} \left\{ \frac{1}{2} - \frac{\pi^{2}}{12} + \ldots \right\} \right) \end{array}$$

naive tree-level normalization

[← Grozin/Neubert]

radiative corrections

[← Lee/Neubert]

• power corrections, requiring $\bar{\Lambda} \ll \mu_m$

[← Lee/Neubert] [← Kawamura et al.]

• power-enhanced terms \leftrightarrow renormalon ambiguity in def. of $\bar{\Lambda}$

[Lee/Neubert]

 \Rightarrow switching to renormalon-free definition $\bar{\Lambda}_{DA}(\mu_m)$

t < 1

$$F_{[+]}(t,\mu_{m})\big|_{\text{radiative}} = \frac{\alpha_{s}C_{F}}{\pi} \frac{\Gamma(1-t)}{\Gamma(1+t)} \frac{e^{-2\gamma_{E}t} e^{t/2}}{\sqrt{e}\mu_{m}} \left\{ -\frac{1}{(t-1)^{2}} + \frac{\bar{\Lambda}}{3\sqrt{e}\mu_{m}} \frac{8-6t}{(t-2)^{2}} + \dots \right\}$$

Read off radiative contribution to logarithmic moments, e.g.

$$L_0(\mu_m)\big|_{\text{radiative}} = -\frac{\alpha_s C_F}{\sqrt{e}\mu_m \pi} \left\{ 1 - \frac{2\bar{\Lambda}}{3\sqrt{e}\mu_m} + \ldots \right\}$$

(suppressed by α_s/π and ω_0/μ_m compared to tree-level result)

By construction, no contribution to low-momentum behaviour.

Step 6: Numerical Implications

... work in progress ...

5. Outlook / ToDo List

WA1:

- generic parametrizations for higher-twist B-meson LCDAs
- lacktriangle implications for phenomenology, in particular for $B o \gamma \ell
 u$
- applying the same ideas to shape functions for inclusive decays

[
ightarrow C2b]

$[\rightarrow \text{WA4} + \text{C1a}]$

WA2:

- new sum rules for B_c form factors
- sum rules for $1/m_{b,c}$ corrections in $B \to D\ell\bar{\nu}$

 $[\rightarrow \mathsf{WA3}]$

WA3:

- semileptonic processes with bottom baryons
- B_c phenomenology

WA4:

- study of non-resonant contributions in $b \rightarrow c$ and $b \rightarrow u$
- decays into excited hadrons