${\cal A}3a$ Extended ${\cal H}iggs$ Sectors at the ${\cal L}HC$

Milada M. Mühlleitner (KIT)
Pls: MMM and Tilman Plehn

SFB Kick-Off 2019 Karlsruhe, 18-19 March 2019

\mathcal{I} ntroduction

- Higgs Discovery → New Era of Particle Physics
 - Structurally completes the Standard Model
 - Self-consistent framework to describe physics up to the Planck scale

$$\mathcal{A} = \frac{G_F s}{8\sqrt{2}\pi}$$

- Higgs Discovery → New Era of Particle Physics
 - Structurally completes the Standard Model
 - Self-consistent framework to describe physics up to the Planck scale

- Higgs Discovery → New Era of Particle Physics
 - Structurally completes the Standard Model
 - Self-consistent framework to describe physics up to the Planck scale

- SM Higgs couplings:
 - ullet $g_{Hfar{f}}\sim rac{m_f}{v}$ and $\sqrt{g_{HVV}}\sim rac{m_V}{v}$

${\mathcal H}iggs\ {\mathcal B}oson\ {\mathcal C}ouplings\ to\ {\mathcal S}M\ {\mathcal P}articles$

[ATLAS/CMS, JHEP08(2016)045]

- Higgs Discovery → New Era of Particle Physics
 - * Structurally completes the Standard Model
 - * Self-consistent framework to describe physics up to the Planck scale
- SM Higgs couplings:

*
$$g_{Hfar{f}} \sim rac{m_f}{v}$$
 and $\sqrt{g_{HVV}} \sim rac{m_V}{v}$

- Discovered Higgs boson:
 - * Behaves very SM-like
- Open Questions:
 - * → Standard Model is low-energy effective theory of more fundamental theory at some high scale

- Higgs Discovery → New Era of Particle Physics
 - * Structurally completes the Standard Model
 - * Self-consistent framework to describe physics up to the Planck scale

• SM Higgs couplings:

*
$$g_{Hfar{f}}\sim rac{m_f}{v}$$
 and $\sqrt{g_{HVV}}\sim rac{m_V}{v}$

- Discovered Higgs boson:
 - * Behaves very SM-like

- Open Questions:
 - * \simpless Standard Model is low-energy effective theory of more fundamental theory at some high scale

$$H$$
---- H

M.M.Mühlleitner, 19 March 2019, SFB Kick-Off, KIT

\mathcal{W} here is \mathcal{N} ew \mathcal{P} hysics?

- Naturalness: Just around the corner!
- Experimental reality: No Beyond the Standard Model Physics discovered so far!

Guido Altarelli, 16/1/2012, KIT: 'The situation is depressing, but not desperate.'

We have the SM-like Higgs boson
 What can we learn from Higgs physics?

\mathcal{W} here is \mathcal{N} ew \mathcal{P} hysics?

- Naturalness: Just around the corner!
- Experimental reality: No Beyond the Standard Model Physics discovered so far!

Guido Altarelli, 16/1/2012, KIT: 'The situation is depressing, but not desperate.'

We have the SM-like Higgs boson
 What can we learn from Higgs physics?

- Direct detection of new physics:
 - Additional Higgs bosons from extended Higgs sectors lighter or heavier than SM-like Higgs

\mathcal{W} here is \mathcal{N} ew \mathcal{P} hysics?

- Naturalness: Just around the corner!
- Experimental reality: No Beyond the Standard Model Physics discovered so far!

 Guido Altarelli, 16/1/2012, KIT: 'The situation is depressing, but not desperate.'
- We have the SM-like Higgs bosonWhat can we learn from Higgs physics?

- Direct detection of new physics:
 - Additional Higgs bosons from extended Higgs sectors lighter or heavier than SM-like Higgs
- Indirect detection of new physics: e.g. deviations from SM couplings
 - ♦ through mixing effects with other Higgs bosons e.g. singlet, doublet, CP admixtures
 - modified Higgs properties through loop effects
 - \diamond modified Γ_{tot} and BRs through invisible decays and/or decays into lighter non-SM states

\mathcal{E} xtended \mathcal{H} iggs \mathcal{S} ectors

• Why extended Higgs sectors?

- * Extended Higgs sectors: help to
 - alleviate metastability
 - ⋄ provide DM candidate
 - ♦ additional sources of CP-violation
 - enable successful baryogenesis
 - ...
- * Many models of new physics require extended Higgs models ← Supersymmetry!

\mathcal{R} ole of \mathcal{P} recision \mathcal{P} hysics

- Precision in theory predicions of Higgs observables indispensable:
 - * SM-like behaviour of discovered Higgs \sim small indirect new physics effects
 - * identification of underlying model ← different new physics models lead to similar effects

• Required:

- * Precision predictions of Higgs observables and backgrounds
- * Tools w/ modern analysis methods efficiently including precision predictions and a global Higgs sector analysis

Hadron Collider Phenomenology:

direct production of new particles → precision physics and indirect searches

Goals of Project A3a

• Project Goal:

- * Systematic analysis of extended Higgs sectors guided by
 - fundamental properties
 - precision computations
 - phenomenology
- * Identify and exploit so far unexplored LHC signatures & observables
- * Provide theoretical model including new propagating states for aready exisiting LHC signatures

• Course of Action:

- (I) Precision studies of electroweak vacuum
- (II) Precision predictions for LHC phenomenology
- (III) Phenomenology and Analysis

${\mathcal B}$ eyond the ${\mathcal S}{\mathsf M}$ ${\mathcal H}$ iggs ${\mathcal S}$ ectors

Beyond SM Higgs Sectors

\mathcal{E} xtended \mathcal{H} iggs \mathcal{S} ectors

- How select the models? Guidelines:
 - * Simplicity
 - * Compatible w/ relevant experimental and theoretical constraints \rightarrow see next slides
 - * Solve (some) of the flaws of the SM
 - * (Part) of the Higgs spectrum accessible at the LHC
 - * Properties testable at the LHC

\mathcal{E} xperimental \mathcal{C} onstraints on \mathcal{E} xtended \mathcal{H} iggs \mathcal{S} ectors

- Electroweak ρ parameter very close 1: simplest solution Higgs singlets and doublets
- Flavor-changing neutral currents (FCNCs): symmetries so that all right-handed fermions of given electric charge couple to exactly one Higgs doublet (e.g. 2HDM type I...IV); minimal flavour violation
- Further Constraints

```
* EWPTs (\leftarrow S, T, U)
```

- * Flavour constraints $(B \to X_s \gamma, R_b, ...)$
- * Higgs data (\leftarrow check e.g. w/ HiggsBounds, HiggsSignals)
- * Direct searches for new particles
- * Low-energy observables
- * Relic density (← models w/ DM candidate)
- * EDM constraints (← models w/ CP violation)

\mathcal{T} heory \mathcal{C} onstraints on \mathcal{E} xtended \mathcal{H} iggs \mathcal{S} ectors

- Higgs potential bounded from below
- EW vacuum global minimum
- Perturbative unitarity

Parameter scans with constraints: Reduction of the parameter space to the allowed parameter space \leadsto sharpen predictions for the models!

Some of the simplest non-SUSY models and the NMSSM

\mathcal{T} he \mathcal{M} odels

	C×SM	2HDM	C2HDM	N2HDM
Model	SM+complex singlet	2 Higgs doublets	CP-violating 2HDM	2HDM+real singlet
Particle	3 CP-even $H_{1,2,3}$	2 CP-even h,H	3 CP-mixed $H_{1,2,3}$	3 CP-even $H_{1,2,3}$
content	(broken phase)	1 CP-odd A		1 CP-odd A
		charged H^\pm	charged H^\pm	charged H^\pm
Motivation	minimal model for	additional sources for	2HDM benefits +	benchmark model
	DM & baryogenesis	for CP-violation; DM	explicit CP violation	for the NMSSM
	benchmark for	candidate (inert 2HDM)	in the Higgs sector	DM candidate
	Higgs-to-Higgs decays	benchmark for MSSM		

ullet The $\mathcal N$ MSSM: 3 CP-even $H_{1,2,3}$, 2 CP-odd $A_{1,2}$, charged H^\pm

${\mathcal P}$ recision ${\mathcal S}$ tudies of the ${\mathcal E}$ lectroweak ${\mathcal V}$ acuum

\mathcal{P} recision \mathcal{S} tudies of the \mathcal{E} lectroweak \mathcal{V} acuum

• Relevance:

- * Interplay stability of SM vacuum and SM parameters
- * Extended Higgs sectors → more complex vacuum structure
- * Understanding crucial to guarantee vacuum stability and proper electroweak symmetry breaking

• Example: 2-Higgs-Doublet-Model (2HDM):

- * three types of minima: normal EW, CP breaking, charge breaking (CB)
- * also possible two coexisting normal EW minima (different VEVs); tunneling possible [Barroso,Ferreira,Ivanov,Santos,2013]
- * if normal minimum exists all CP or CB stationary points proven to be saddle points [Ferreira,Santos,Barroso,2004]

• Example: Next-2HDM (N2HDM):

- * minimum conditions of 2HDM do not apply to N2HDM
- * possibility of CP and CB-breaking minima

[MMM,Sampaio,Santos,Wittbrodt]

Vacuum Stability and Loop Corrections

- Example: Inert 2HDM: two types of EW minima at tree level can coexist
 - * points allowed a tree level excluded at one-loop level and vice versa [Ferreira, Swiezewska, 2006]
- Example: CP-violating 2HDM:
 - * points allowed at tree level excluded at NLO

[Basler, MMM, Wittbrodt, 2018]

- * Loop-corrected effective potential at $T \neq 0 \leadsto$ test for a strong first order phase transition (SEWPT)
- * SEWPT testable through measurement of trilinear Higgs self-couplings [Grojean, Servant, Wells] [Noble, Perelstein 2008; Huang, No, Pernié, Ramsey-Musolf, 2017; Basler, MMM, Wittbrodt, 2018; Reichert, Eichhorn, Gies, Pawlowski, TP, Scherer, 2018] link to gravitational waves
- Vacuum Study of SUSY Models:

[Hollik, Weiglein, Wittbrodt (tree), '19; Vevacious, Camargo-Molina eal, '13 (loop)]

Fundamental properties of Higgs potential imply limits on mass ranges of additional scalars and affects their possible production and decay patterns as well as the Higgs self-interaction strengths

Vacuum \mathcal{L} ink to \mathcal{H} igh- \mathcal{E} nergy \mathcal{S} cales

• High-energy scales:

- * Link between vacuum stability and high-energy scales \rightarrow T (perturbative studies)
- * Higher-dimensional operators can lead to measurable effects below actual thresholds
- * Systematic study of these effects wrt vacuum stability, DM, nature of EWPT complements perturbative approach

[Eichhorn, Gies, Jaeckel, TP, Scherer, 2015; Reichert, Eichhorn, Gies, Pawlowski, TP, Scherer, 2018]

\mathcal{P} roject \mathcal{P} lan - \mathcal{V} acuum \mathcal{S} tability

Precision studies:

- * Investigation of vacuum stability of models w/ additional scalar states (\(\simes \text{successful} \) baryogenesis) at NLO in the effective potential approach (SUSY and non-SUSY models)
- * Study changes wrt to tree-level results, study impact on allowed parameter space
- * First steps to consider also metastability conditions \rightarrow extension beyond current CRC

Models w/ DM candidates:

- * Investigate how Z_2 symmetry (\leftarrow DM quantum number) can be guaranteed beyond tree level
- * Study how preferred parameter choices impact extrapolation to high-energy scales

\mathcal{P} roject \mathcal{P} lan \mathcal{C} ontinued - \mathcal{V} acuum \mathcal{S} tability

Evolution to High-Energy Scales:

- * Complement perturbative approach by functional renormalization group → possible to evolve general Higgs potentials to higher energies, including higher-dimensional operators
- * Study inherent uncertainties in perturbative approach
- * (i) Include full set of Higgs and Goldstone fields w/ full set of running gauge couplings, confirm arpproximate results for vacuum stability and baryogenesis;
 - (ii) Add more scalar fields, covering their full mass range; study their decoupling from dynamical description of EWPT or their treatment as part of the effective Lagrangian
- * Challenge: keep track of all parameters in the coupled numerical RGE → application of maching learning techniques → link to project A2a

${\mathcal P}$ recision ${\mathcal P}$ redictions for ${\mathcal L}$ HC ${\mathcal P}$ henomenology

Status of EW Higher-Order Corrections to BSM Higgs Decays

• BSM Higher-Order Corrections to Higgs Production and Decay:

- * QCD corrections can be adapted to BSM models, EW corrections cannot!
- * EW corrections to Higgs decay widths typically of $\mathcal{O}(10\%)$; but can be considerably larger:
 - Impact important if of same size as QCD corrections and of opposite sign
 - NLO corrections important if LO width is small
 - Corrections can be parametrically enhanced
 - Light Higgs particles in the loop can enhance loop corrections

• Higher-Order Corrections to NMSSM Higgs Decays:

- * NLO SUSY-EW and SUSY-EW corrections to Higgs decays into stop pairs: EW corrections can be of same order as QCD corrections and of opposite sign $[Baglio, Krauss, MMM, Walz] \rightarrow T$
- * For the one-loop renormalization of the NMSSM Higgs sector, see also [Bélanger,Bizouard,Boudjema,Chalons]
- * Higher-order corrections can be parametrically enhanced $\rightarrow \Delta_b$ corrections [Hempfling; Hall,Rattazzi,Sarid; Carena eal; Pierce eal; Nierste eal; Guasch eal; Noth eal; Ghezzi eal] implemented in NMSSMCALC [Baglio,Grober,MMM,Nhung,Rzehak,Streicher,Spira,Walz]

$\mathcal{N}\mathsf{MSSM}$ $\mathcal{P}\mathsf{seudoscalar}$ $\mathcal{D}\mathsf{ecay}$ into $\mathcal{S}\mathsf{tops}$

[Baglio, Krauss, MMM, Walz, '15]

 \diamond Parameter point: $M_{A_2}=1012$ GeV, $m_{\tilde{t}_1}=281$ GeV, $m_{\tilde{t}_2}=709$ GeV

Status of EW Higher-Order Corrections to BSM Higgs Decays

Higher-Order Corrections to 2HDM Higgs Decays:

* Gauge parameter independent renormalization scheme first developed by
 [Krause, Lorenz, MMM, Santos, Ziesche, '16]
 see also
 [Denner, Jenisches, Lang, Sturm, '16; Altenkamp, Dittmaier, Rzehak, '17; Denner, Dittmaier, Lang, '18]

- * EW corrections to Higgs decays of up to $\mathcal{O}(20\%)$
- * Large EW corrections in Higgs-to-Higgs decays possible [Kanemura eal;
 Krause, MMM, Santos, Ziesche, '16] → link to project A3b
- * Code 2HDECAY including EW and state-of-the-art QCD correction to 2HDM Higgs decays in various renormalization schemes [Krause, MMM, Spira, '18]

• Higher-Order Corrections to further Singlet/Doublet Extensions:

* Generic one-loop two-body decay widths

[Goodsell, Liebler, Staub, '17]

 $\rightarrow \mathsf{T}$

- * EW corrections to Higgs decays in singlet extensions [Kanemura eal,'15; Bojarski eal,'15; Goodsell eal,'17; Altenkamp eal,'18]
- * Gauge-independent renormalization of the N2HDM

[Krause, Lopez-Val, MMM, Santos, '17]

$2\mathcal{H}\mathsf{DM}\;\mathcal{H}\mathsf{igher} ext{-}\mathcal{O}\mathsf{rder}\;H o ZZ\;\mathcal{D}\mathsf{ecay}$

[Krause, Lorenz, MMM, Santos, Ziesche, '16]

- \diamond Left/Right: with/without process-dependent renormalization ($\leftarrow H/A \rightarrow \tau \tau$)
- \diamond gauge-parameter independent renormalization: pOS c,o , p $^{o,c}_*$; dependent: KOSY c
- $\diamond \ \Delta = (\Gamma^{\mathsf{NLO}} \Gamma^{\mathsf{LO}}) / \Gamma^{\mathsf{LO}}$

${\mathcal S}$ tatus ${\mathcal M}$ SSM ${\mathcal H}$ iggs ${\mathcal P}$ roduction through ${\mathcal G}$ luon ${\mathcal F}$ usion

• HO Corrections to MSSM Higgs Boson Production:

Small $\tan \beta$: gluon fusion dominant; QCD corrections to SM loops can be taken over for scalar production; however additional squarks in the loops

- * QCD corrections to (s)top and (s)bottom loops including the resummation of soft and collinear gluon effects available [Krämer eal; Djouadi eal; Graudenz eal; Spira eal; Dawson eal; Schmidt eal] NLO corrections (including the full top quark and Higgs mass dependence but not the bottom and squark mass dependence) of O(100%)
- * NLO QCD corrections to quark and squark loops including the full mass dependence of top and squarks [MMM,Spira]; mass effects of $\mathcal{O}(20\%)$
- * Analytic results for virtual quark and squark loops [Anastasiou eal; Aglietti eal]
- * Genuine SUSY-QCD corrections in the limit of heavy loop particle masses [Harlander eal; Degrassi eal]
- * Investigation of proper decoupling of heavy gluino contributions [MMM,Spira,Rzehak]

\mathcal{P} roject \mathcal{P} lan - \mathcal{P} recision \mathcal{P} redictions

Higher-Order Correction to the Decays:

- * compute missing higher-order (HO) corrections to BSM Higgs decays
- * provide suitable renormalization schemes, estimate size of remaining theoretical uncerstainties
- * investigate gauge dependencies
- * investigate size and impact of HO corrections on LHC phenomenology
- * for the following models
 - SUSY-EW and SUSY-QCD corrections to charged Higgs decays in the CP-violating NMSSM (neutral Higgs decays - being finalized)
 - ♦ EW corrections in the C2HDM
 - ♦ EW corrections in the N2HDM w/ singlet and doublet DM sectors
- * Approach: Feynman diagrammatic approach using the usual tools (FeynArts, FeynCalc, FormCalc, LoopTools); in general R_{ξ} gauge; make codes publicly available

\mathcal{P} roject \mathcal{P} lan \mathcal{C} ontinued - \mathcal{P} recision \mathcal{P} redictions

- Pseudoscalar MSSM Higgs Production in Gluon Fusion NLO SUSY-QCD corrections to $gg \rightarrow A$; approach:
 - * Numerical integration of five-dimensional Feynman integrals
 - * Separation of UV singularities through suitable endpoint substractions (there are no IR nor collinear singularities) \iff separate integrals for divergent and finite pieces
 - * Stabilation of numerical integration above virtual particle thresholds through integration by part

Future beyond current CRC: translation to NMSSM, to 2HDM

${\mathcal P}$ henomenology and ${\mathcal A}$ naylsis

\mathcal{R} ole and \mathcal{C} hallenges of \mathcal{G} lobal \mathcal{A} nalysis

Why a Global Analysis?

- * Global analysis of all LHC and other relevant constraints both theoretical and experimental crucial to
- * properly scrutinize New Physics models

← link to projects B2b,B3a,C3a,C3b

- * Impact:
 - models may be completely or partially ruled out
 - impact on mass hierarchies of non-SM Higgs bosons
 - impact on size of higher-order corrections
 - impact on possible distinction of BSM models
 - ⋄ impact on possible LHC signatures and observables; ...
- * See e.g. analysis of 2HDM alignment region [Bernon eal,'15]; comparison of singlet extensions and NMSSM [Costa,MMM,Sampaio,Santos]; scrutinization of N2HDM parameter space [MMM,Sampaio,Santos,Wittbrodt], phenomenological comparison of extended Higgs sectors [MMM,Sampaio,Santos,Wittbrodt], Re-investigation of C2HDM [Fontes,MMM,Romao, Santos,Silva,Wittbrodt]; SFitter [Biekötter,Butter,TP,Rauch] → T
- * Systematic inclusion of HO effects in Higgs observables is crucial

SFitter Analysis

[Lopez-Val, TP, Rauch, '13]

red: coupling modifiers (non-linear EFT); aligned 2HDM w/o (blue), with (light blue) EWPO, flavor, theory constraints

\mathcal{R} ole and \mathcal{C} hallenges of \mathcal{G} lobal \mathcal{A} nalysis \mathcal{C} ontinued

Challenges and Approaches for Global Analysis:

- * Definition of Lagrangian behind global study is crucial (including particle content and symmetry structure ← determined from dedicated observables) [Brehmer,Kling,TP,Tait,'17]
- * MADMAX approach to understand sensitivity of multivariate analyses to specific phase space patterns; is based on discrete hypothesis tests and Neyman-Pearson lemma
- * New MADMINER approach based on information geometry; applied to effective Higgs operators [Brehmer, Cranmer, Kling, TP, '17] and CP properties of SM-like Higgs boson in EFT framework [Brehmer, Kling, TP, Tait, ,'17]
- * Likelihood-free analysis techniques [Brehmer eal] and the matrix element method [Martini,Uwer] challenge for the proper understanding of LHC searches, the proper description of detector effects and irreducible bkgs

 important for BSM Higgs searches
- * Possible Solution: Generative Adversarial Networks (GANs) [Paganini eal; Erdmann eal] provides fast and flexible numerical description of detector effects and of precision predictions

${\mathcal P}$ roject ${\mathcal P}$ lan - ${\mathcal P}$ henomenology and ${\mathcal A}$ nalysis

• Further Development of MADMINER tool:

- * introduced to extract fundamental particle properties
- * further developments: go beyond effective theories, focus on signatures w/ new particles
- * goal: systematic identification of ways to extract fundamental properties from dedicated observables and state-of-the-art analyses with global phase space coverage
- * goal: public version of the tool as part of MADGRAPH

\mathcal{P} roject \mathcal{P} lan - \mathcal{P} henomenology and \mathcal{A} nalysis \mathcal{C} ontinued

Improvements through Machine Learning Applications (MLA):

- * extended Higgs sector searches combined w/ our developed precision predictions \rightarrow perfect framework for improvements of BSM physics searches through MLA
- \ast Approach: matrix element method w/ efficient detector resolution modelling; improvement through GANs
- * goal: efficient description of detector effects and efficient interpolation between phase space regions
- * goal: possibility to invert effects of detector smearing and to statistically relate observable phase space features with parton-level structures
- * program: train GANs for simple processes, develop scalable approach; tackle complicated phase space configurations; develop publicly available GAN tool

\mathcal{P} roject \mathcal{P} lan - \mathcal{P} henomenology and \mathcal{A} nalysis \mathcal{C} ontinued

- Final Goal: Combination of high-precision predictions for Higgs observables with theoretical and experimental constraints into a coherent analysis
 - * links all aspects of A3a and adds other constraints from electroweak precision data and from flavour physics (\rightarrow CP violation!) \rightarrow link to project area C
 - * builds on SFITTER analysis [Lopez-Val,TP,Rauch]

- \rightarrow link to A2a
- * supplemented by automated simulation of cross sections and major kinematic distributions through MADGRAPH
- * code gives access to wide range of LHC observables, indirect constraints and an advanced statistical treatment

\mathcal{L} inks to \mathcal{O} ther \mathcal{P} rojects

- ♦ precision predictions for Higgs production (A1a,A1c) crucial for determin. of Higgs properties
- ♦ EFT analyses of A2a, A2b can be mapped onto complete models of A3a; use SFITTER results from A2a
- ♦ insights gained in A3b (Higgs potential parameters) feed back into A3a and vice versa
- ⋄ relevance for interpretation of top-quark results of B2b in New Physics scenarios
- ♦ DM results from B3a feed back into A3a
- ⋄ insights on additional heavy top partners from C3a feed back into A3a

\mathcal{T} hank \mathcal{Y} ou \mathcal{F} or \mathcal{Y} our \mathcal{A} ttention!

${\mathcal S}$ tability of the ${\mathcal S}$ M ${\mathcal V}$ acuum

Degrassi, Di Vita, Elias-Miro, Espinosa '12

Bednyakov, Kniehl, Pikelner, Veretin '15

${\mathcal E}$ ffects on the ${\mathcal T}$ rilinear ${\mathcal H}$ iggs ${\mathcal S}$ elf- ${\mathcal C}$ oupling - ${\mathcal C}$ 2HDM

Type I, $H_1 = h$ - right plot: only CP-violating points

[Basler, MM, Wittbrodt '17]

* Grey: exp+theor constraints, colour $\xi_c \geq 1$

*
$$1.1 \lesssim \left| \frac{\lambda_{hhh}^{\text{C2HDM,NLO}}}{\lambda_{hhh}^{\text{SM,NLO}}} \right| \lesssim 2.9$$

* CP-odd part of $h \lesssim 24\% \xrightarrow{\text{EWPT}} \sim 2.5\%$

\mathcal{T} heory \mathcal{C} onstraints and \mathcal{H} igher- \mathcal{O} rder \mathcal{C} orrections

Impact of theory constraints, perturbative unitarity, LHC data on 2HDM (plot type 1 2HDM) [Basler, Ferreira, MM, Santos, 17]

- ♦ Left: 1-loop RGE, tree-level matching, right: 2-loop RGE, 1-loop matching of Higgs parameters
- \diamond Alignment for $m_{H^\pm} \gtrsim 500$ GeV and validity up to $\Lambda =$ Planck scale

See also [Chakrabarty eal; Bhupal Dev eal; Das, Saha; Chowdhury, Eberhardt; Ferreira eal; Chakrabarty eal; Cacchio eal; Cherchiglia, Nishi; Krauss eal; Goodsell, Staub; Braathen eal; ...]

$2\mathcal{H}\mathsf{DM}\;\mathcal{H}\mathsf{igher} ext{-}\mathcal{O}\mathsf{rder}\;H o ZZ\;\mathcal{D}\mathsf{ecay}$

[Krause, Lorenz, MMM, Santos, Ziesche, '16]

- \diamond Left/Right: with/without process-dependent renormalization ($\leftarrow H/A \rightarrow \tau \tau$)
- \diamond gauge-parameter independent renormalization: pOS c,o , p $^{o,c}_*$; dependent: KOSY c
- $\diamond \ \Delta = (\Gamma^{\mathsf{NLO}} \Gamma^{\mathsf{LO}}) / \Gamma^{\mathsf{LO}}$

$2\mathcal{H}$ DM \mathcal{H} igher- \mathcal{O} rder \mathcal{H} iggs-to \mathcal{H} iggs \mathcal{D} ecays

[Krause, MMM, Santos, Ziesche, '16]

- ⋄ Points pass theoretical and experimental constraints
- ♦ Three different renormalization schemes: two pinched, one process-dependent scheme
- ⋄ Right: Only strong-coupling regime

\mathcal{M} ass \mathcal{D} istributions

[MM,Sampaio,Santos,Wittbrodt '17]

- Tools for scan: ScannerS, sHDECAY, N2HDECAY
- Degenerate Higgs bosons around 125 GeV not included
- Includes latest bound on $M_{H^\pm}({\rm 2HDM~II}) > 580~{\rm GeV}$ [Misiak,Steinhauser '17]

\mathcal{M} ass \mathcal{D} istributions

[MM,Sampaio,Santos,Wittbrodt '17]

- All models: $m_{H_{\downarrow}} < m_{h_{125}}$ possible (C2HDM: only in the real 2HDM limit)
- Type I N2HDM, CxSM, C2HDM: $m_{H_{\uparrow}} < m_{h_{125}}$ possible
- Pseudoscalars (N2HDM, NMSSM) can be lighter than 125 GeV