Milada M. Mühlleitner (KIT) Pls: MMM and Matthias Steinhauser SFB Kick-Off 2019 Karlsruhe, 18-19 March 2019 ## \mathcal{I} ntroduction ### \mathcal{H} iggs \mathcal{P} otential #### • Parameters of the Higgs Potential: - * Higgs boson mass and Higgs self-couplings - * Their interplay is extremely important for stability of the Higgs potential #### • SM Higgs Potential: $$V(H) = \frac{1}{2!} \lambda_{HH} H^{2} + \frac{1}{3!} \lambda_{HHH} H^{3} + \frac{1}{4!} \lambda_{HHHH} H^{4}$$ | ${\mathcal T}$ rilinear coupling | $\lambda_{HHH} = 3 \frac{M_H^2}{v}$ | > | |----------------------------------|--|------| | Quartic coupling | $\lambda_{HHHH} = 3 \frac{M_H^2}{v^2}$ | ```× | #### • Beyond-the-SM Potentials: - * Relation between masses and self-couplings more complicated - * Masses and self-couplings can be independent of each other (← underlying symmetry) ### \mathcal{T} he \mathcal{R} ole of the \mathcal{H} iggs \mathcal{B} oson \mathcal{M} ass • Present accuracy: [ATLAS, CMS, Phys Rev Lett 114 (2015) 191803] $$M_H = 125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (syst)} \text{ GeV}$$ - Higgs boson mass: - * SM: fundamental parameter, not given by theory - * Supersymmetry: calculable from input parameters loop corrections Δm_h^2 are important! MSSM: $m_H^2 \approx M_Z^2 \cos^2 2\beta$ $+\Delta m_H^2 \leftarrow (85 \text{ GeV})^2!$ NMSSM: $m_H^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_H^2 \leftarrow (55 \text{ GeV})^2$ MSSM: see e.g. [Bechtle, Haber, Heinemeyer Stal, Stefaniak, Weiglein, Zeune '16] #### \mathcal{T} he \mathcal{R} ole of the \mathcal{H} iggs \mathcal{B} oson \mathcal{M} ass #### • Why precision? - * Self-consistency test of SM at quantum level (e.g.: Higgs loop corrections to W boson mass) - * $M_H \leftrightarrow$ stability of the electroweak vacuum [Degrassi eal;Bednyakov eal] - * Higgs mass uncertainty feeds back in uncertainty on Higgs observables - * Test parameter relations in beyond-SM theories - → indirect constraint of viable Beyond-SM (BSM) parameter space! \rightarrow Link to project A3a ### \mathcal{T} he \mathcal{R} ole of the \mathcal{H} iggs \mathcal{S} elf- \mathcal{I} nteraction #### • The EWSB potential: $$V(H) = \frac{1}{2!} \lambda_{HH} H^2 + \frac{1}{3!} \lambda_{HHH} H^3 + \frac{1}{4!} \lambda_{HHHH} H^4$$ $\mathcal{M}\mbox{easurement}$ of the scalar boson self-couplings and \mathcal{R} econstruction of the EWSB potential \mathcal{E} xperimental verification \mathcal{O} f the scalar sector of the \mathcal{E} WSB mechanism #### • The Role of the Higgs Self-Coupling: - * Measurement crucial for our understanding of the mechanism behind EWSB - * Size important for successful baryogenesis ightarrow T * Despite very SM-like Higgs couplings, self-interaction can still deviate substantially from SM value ### \mathcal{E} ffects on the \mathcal{T} rilinear \mathcal{H} iggs \mathcal{S} elf- \mathcal{C} oupling - \mathcal{C} 2HDM Type I, $H_1 = h$ - right plot: only CP-violating points [Basler, MM, Wittbroot '17; Basler, MMM BSMPT] '18] * Grey: exp+theor constraints, colour $\xi_c \geq 1$ * $$1.1 \lesssim \left| \frac{\lambda_{hhh}^{\rm C2HDM,NLO}}{\lambda_{hhh}^{\rm SM,NLO}} \right| \lesssim 2.9$$ * CP-odd part of $h \lesssim 24\% \xrightarrow{\rm EWPT} \sim 2.5\%$ #### \mathcal{A} ccess to the \mathcal{H} iggs \mathcal{S} elf- \mathcal{I} nteraction ### • How large can λ_{3H} be? $\lambda_{3H} = \kappa_{\lambda} \lambda_{3H}^{\text{SM}}$ - $|\kappa_{\lambda}| \leq 6$ [Di Luzio, Grober, Spannowsky, 1704.02311] - $|\kappa_{\lambda}| \leq 6$ [Di Vita, Grojean, Panico, Riembau, Vantalon, 1704.01953] - $\kappa_{\lambda} \leq 5/3$ [Kurup, Perelstein, 1704.03381] - $|\kappa_{\lambda}| \leq 10$ [Falkowski, Rattazzi] #### • Determination of the scalar boson self-couplings at colliders: λ_{HHH} via Higgs-to-Higgs decays (\leftarrow BSM) λ_{HHH} pair production radiation off W/Z, WW/ZZ fusion, assoc. prod. w/ $t\bar{t}$, gg fusion λ_{HHHH} triple production ### \mathcal{D} ouble \mathcal{H} iggs \mathcal{P} roduction \mathcal{P} rocesses Baglio, Djouadi, Quevillon #### \mathcal{G} oals of \mathcal{P} roject $\mathcal{A}3b$ - Project Goal: Provide precise predictions for Higgs potential parameters and related observables - Increase Precision in $gg \rightarrow HH$: - ⋄ NLO QCD corrections including the full mass dependence in SM and MSSM - ♦ Improve approximate results at NNLO - ♦ N³LO in SM in large top-mass expansion - Increase Precision in Higgs-to-Higgs Decays: - ♦ NLO corrections for C2HDM, N2HDM, NMSSM ← possibility of decays chains with subsequent Higgs-to-Higgs decays, possibility of Higgs pair with different Higgs bosons in the final state - Computation of HO Corrections to Higgs Boson Masses: - MSSM: three-loop corrections enhanced by Yukawa couplings - ♦ NMSSM: relevant two-loop corrections - Implementation in computer codes ## \mathcal{H} iggs \mathcal{P} air \mathcal{P} roduction #### \mathcal{D} ominant $\mathcal{H}H$ \mathcal{P} rocess at the $\mathcal{L}HC$ • Gluon fusion - dominant process • SM HH cross section small: $$\sigma_{gg o HH}^{ m NLO} = 32.91^{+13.6\%}_{-12.6\%} \ { m fb} \ { m @14 \ TeV}$$ [Borowka eal '16] ### Challenge $\mathcal{D}i$ - $\mathcal{H}iggs$ $\mathcal{P}roduction$ • Small signal + large QCD background \leadsto Experimental challenge! $\mathcal{O}(\pm(15-20)\lambda_{HHH}^{\rm SM})$ [ATLAS,CMS] [CMS-PAS-HIG-17-008] • Prospects in $b\bar{b}\gamma\gamma$ final state: $-0.8 < \lambda_{hhh}/\lambda_{hhh}^{\rm SM} < 7.7$ [ATL-PHYS-PUB-2017-001] ### \mathcal{G} luon \mathcal{F} usion into \mathcal{H} iggs \mathcal{P} airs ullet Gluon fusion: loop induced, third generation dominant $\leadsto t,b$ • NLO QCD corrections (HTL): $\sim 90-100\%$ $[M_H^2\ll 4m_t^2,\mu=M_{HH}]$ [Dawson, Dittmaier, Spira] ### ${\mathcal S}$ tatus ${\mathcal H}$ igher ${\mathcal O}$ rder ${\mathcal C}$ orrections | • 2-loop QCD corrections | large top mass expansion, $\pm 10\%$ | ${\sf Grigo}, {\sf Hoff}, {\sf Melnikov}, {\sf Steinhauser}$ | |--|--------------------------------------|---| | NLO mass effects @ NLO in real corrections | $\sim -10\%$ | Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro | | NNLO QCD corrections | $M_H^2 \ll 4m_t^2, \sim$ 20% | de Florian,Mazzitelli;
Grigo,Melnikov,Steinhauser | | Soft gluon resummation | $M_H^2 \ll 4m_t^2, \sim$ 10% | Shao,Li,Li,Wang;
de Florian, Mazzitelli | | • NLO: high energy | $Q^2 \gg m_t^2$ | Davies, Mishima,
Steinhauser, Wellmann | | NNLO differential | | deFlorian, Grazzini, Hanga, Kallweit,
Lindert, Maierhöfer, Mazzitelli, Rathlev | | NNLO Monte Carlo | full top-mass effects @ NLO, | Grazzini, Heinrich, Jones,
Kallweit, Kerner, Lindert, Mazzitelli | | | +10 to $+20%$ in distributions | | | • At NLO | matching to parton showers | Heinrich, Jones, Kerner,
Luisoni, Vryonidou | #### \mathcal{F} ull \mathcal{N} LO \mathcal{C} alculation • Full NLO calculation: top only Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke numerical integration, sector decomposition, tensor reduction, contour deformation 14TeV: $$(m_t = 173 \text{GeV})$$ $\sigma_{\text{NLO}} = 32.91(10)^{+13.8\%}_{-12.8\%} \text{ fb}$ $\sigma^{\text{HTL}}_{\text{NLO}} = 38.75^{+18\%}_{-15\%} \text{ fb}$ $(\leftarrow \text{HPAIR})$ \Rightarrow -15% mass effects on top of LO \rightarrow T - New expansion/extrapolation methods: - (i) $1/m_t^2$ expansion + conformal mapping + Padé aprroximants Gröber, Maier, Rauh (ii) p_T^2 expansion Bonciani, Degrassi, Giardino, Gröber • Full NLO calculation: top only first independent cross-check Baglio, Campanario, Glaus MM, Spira, Streicher numerical integration, IR subtraction, no tensor reduction, Richardson extrapolation 14TeV: $$(m_t = 172.5 \text{GeV})$$ $\sigma_{\text{NLO}} = 32.78(7)^{+13.5\%}_{-12.5\%} \text{ fb}$ $\sigma^{\text{HTL}}_{\text{NLO}} = 38.66^{+18\%}_{-15\%} \text{ fb}$ $(\leftarrow \text{HPAIR})$ \Rightarrow -15% mass effects on top of LO #### **NLO** $gg \rightarrow HH$ with \mathcal{F} ull \mathcal{M} ass \mathcal{D} ependence Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke, Phys. Rev. Lett. 117 (2016) 1 Red: full result w/ mass dependence; blue/green approximations; scale variation: $\mu=(0.5...2)m_{hh}/2$ See also [Borowka eal, JHEP 1610(2016)107] ## \mathcal{P} roject \mathcal{P} art: \mathcal{A} pproximations ### $gg \to HH$ Approximations for $\mathcal{N}\mathsf{LO}$ - * exact NLO: very CPU-time expensive [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zicke'16; Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher'18] - * idea: construct approximations - cross-check for exact result - combine different kinematic regions and construct fast and precise approximation - * large m_t [Grigo, Hoff, Melnikov, Steinhauser'13; Degrassi, Giardine, Gröber'16] threshold [Gröber, Maier, Rauh'17] small- p_T [Bonciani, Degrassi, Giardino, Gröber'18] high-energy [Davies, Mishima, Steinhauser, Wellmann'18'19] ### gg o HH Approximations for $\mathcal{N} extsf{LO}$ - $\mathcal{R} extsf{esults}$ $F_{\rm tri}$, $F_{\rm box1}$, $F_{\rm box2}$ real and imaginary part; m_t^{14} and m_t^{16} terms [Davies, Mishima, Steinhauser, Wellmann'18] $1/m_t^{12}$ terms from [Grigo, Hoff, Steinhauser'15] ### $gg \to HH$: Virtual Corrections at NNLO for Large m_t #### * Aim: - ♦ use Padé approach [Gröber, Maier, Rauh'17] and construct approximation - improve approximations as [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli'18] - Needed: "many" expansion terms for large m_t for the form factors $F_{\rm tri}$, $F_{\rm box1}$, $F_{\rm box2}$ - [Grigo, Hoff, Steinhauser' 15]: 3 terms for $d\sigma/ds$ - extension to 5 terms non-trivial . . . work in progress [Davies, Steinhauser] - information about threshold from [Gröber, Maier, Rauh'17] ### $gg \to HH$: N³LO for $m_t \to \infty$ $$\mathcal{L}_{\text{eff}} = -\frac{H}{v}C_H \mathcal{O}_1 + \frac{1}{2} \left(\frac{H}{v}\right)^2 C_{HH} \mathcal{O}_1 \qquad \mathcal{O}_1 = G^a_{\mu\nu} G^{\mu\nu,a}/4$$ Matching: [Gerlach, Herren, Steinhauser' 18] $$(C_{HH}Z_{\mathcal{O}_{1}} + C_{H}^{2}Z_{11}^{L})\mathcal{A}_{\text{LO},1\text{PI}}^{\text{eff}} + C_{H}^{2}Z_{\mathcal{O}_{1}}^{2}\mathcal{A}_{\text{LO},1\text{PR},\lambda=0}^{\text{eff}} + C_{H}Z_{\mathcal{O}_{1}}\mathcal{A}_{\text{LO},1\text{PR},\lambda\neq0}^{\text{eff}}$$ $$= \frac{1}{\zeta_{3}^{0}} \left(\mathcal{A}_{1\text{PI}}^{h} + \mathcal{A}_{1\text{PR},\lambda=0}^{h} + \mathcal{A}_{1\text{PR},\lambda\neq0}^{h} \right) + \mathcal{O}(1/m_{t})$$ Z_{11}^L : new at 4 loops; renormalization of product of two operators \mathcal{O}_1 [Zoller'16] * direct calculation of C_H to 4 loops agreement with LET [Schröder, Steinhauser'06; Chetyrkin, Kühn, Sturm'06] * direct calculation of C_{HH} to 4 loops agreement with LET [Spira'16] ### gg o HH: $\mathcal{N}\mathsf{NLO}$ $\mathcal{R}\mathsf{eal}$ $\mathcal{R}\mathsf{adiation}$ for $\mathcal{L}\mathsf{arge}$ m_t - * $m_t \to \infty$: [de Florian, Mazzitelli'13] - * $+1/m_t^2$, $1/m_t^4$: only soft-virtual approximation [Grigo, Hoff, Steinhauser' 15] - * Aim: real radiation for $m_t^2 \gg s, t$ work in progress [Davies, Herren, Mishima, Steinhauser] ## \mathcal{P} roject \mathcal{P} art: \mathcal{E} xact \mathcal{C} alculation at NLO ### **NLO** $gg \rightarrow HH$ with \mathcal{F} ull \mathcal{M} ass \mathcal{D} ependence Baglio, Campanario. Glauss, MM, Streicher, Spira '18 - independent cross-check of [Borowka eal]; completely different methods; no fixed masses - first untertainty estimate due to scheme and scale choice of top-quark mass #### NLO With \mathcal{I} nclusion of \mathcal{M} ass \mathcal{E} ffects - NLO Result w/ Mass Dependence: - * Mass effects significant, in particular in distributions ← New Physics effects - * Also important to check validity of approximations #### NLO With Inclusion of Mass Effects #### Projects: - * Extend SM calculation to inclusion of effective dimension-6 operators to generically consider New Physics effects - * NLO QCD corrections to MSSM Higgs pair production including full mass effects #### • Features of Calculation in the MSSM: * Application of techniques developped in SM ightarrow T * $gg \rightarrow hh, HH, hH, AA, hA, HA$ new: ightarrow T - \diamond bottom quark loops can become important \leftarrow large aneta - ♦ Squark loops, genuine SUSY-QCD corrections - heavy, light Higgs exchanges in triangle diagram - \diamond gg o AA, hA, HA requires proper treatmen of γ_5 - $\diamond gg \rightarrow hA, HA$ mediated by A, Z exchange, new tensor structures \rightarrow beyond current CRC Beyond current CRC: extend results to other well-motivated BSM models, e.g. NMSSM, C2HDM #### SM Calculation: Virtual Corrections #### Virtual corrections 47 generic box diagrams, 8 triangle diagrams (\leftarrow single Higgs), 1PR ($\leftarrow H \rightarrow Z \gamma$) - * full diagram w/o tensor reduction \rightarrow 6-dim. Feynman integral - * UV singularities: end-point subtractions $$\int_0^1 dx \frac{f(x)}{(1-x)^{1-\epsilon}} = \int_0^1 dx \frac{f(1)}{(1-x)^{1-\epsilon}} + \int_0^1 dx \frac{f(x)-f(1)}{(1-x)^{1-\epsilon}} = \frac{f(1)}{\epsilon} + \int_0^1 dx \frac{f(x)-f(1)}{1-x} + \mathcal{O}(\epsilon)$$ - * IR singularities: IR subtraction (based on struc. of integrand and relative to HTL) - * thresholds: $Q^2 \ge 0, 4m_t^2 \leadsto \text{IBP} \leadsto \text{reduction of power of denominator}$ $[m_t^2 \to m_t^2 (1-ih)]$ $$\int_0^1 dx \frac{f(x)}{(a+bx)^3} = \frac{f(0)}{2a^2b} - \frac{f(1)}{2b(a+b)^2} + \int_0^1 dx \frac{f'(x)}{2b(a+bx)^2}$$ ### NLO \mathcal{M} SSM \mathcal{G} luon \mathcal{F} usion to \mathcal{H} iggs \mathcal{P} airs - \mathcal{D} iagrams $\phi_{1,2} \in \{h, H\}$ (c) (d) (e) ## \mathcal{H} iggs- \mathcal{T} o- \mathcal{H} iggs \mathcal{D} ecays #### \mathcal{B} SM \mathcal{H} iggs-to- \mathcal{H} iggs \mathcal{D} ecays - Higgs Sector Extensions by singlet and doublet fields ← no unreasonable amount of finetuning - * Two-Higgs Doublet Model (2HDM) and Next-to-2HDM (N2HDM) as benchmark models for MSSM and NMSSM - * More freedom, richer phenomenology ← no underlying supersymmetry - * Enlarged Higgs sector allows for Higgs-to-Higgs (cascade) decays → exotic signatures #### • Higher-Order Corrections: - \diamond Electroweak corrections can become substantial due to large Higgs self-couplings or light particles in the loop [Kanemura eal; Krause,MMM,Santos,Ziesche; Krause,Lopez-Val,MMM,Santos] - \diamond Corrections to MSSM Higgs neutral self-couplings can become substantial: at one-loop a factor 2, at $\mathcal{O}(\alpha_t \alpha_s)$ few percent [Hollik,Penaranda; Dobado eal; Brucherseifer,Gavin,Spira] - \diamond Effective one-loop-corrected NMSSM couplings have substantial impact on Higgs-to-Higgs decays [Nhung,MMM,Streicher,Walz] \rightarrow T relative two-loop $\mathcal{O}(\alpha_t\alpha_s)$ corrections are of $\mathcal{O}(5-10\%)$ [MMM,Nhung,Ziesche] ### $2\mathcal{H}$ DM \mathcal{H} igher- \mathcal{O} rder \mathcal{H} iggs-to \mathcal{H} iggs \mathcal{D} ecays [Krause, MMM, Santos, Ziesche, '16] - ⋄ Points pass theoretical and experimental constraints - ♦ Three different renormalization schemes: two pinched, one process-dependent scheme - ⋄ Right: Only strong-coupling regime #### \mathcal{P} roject \mathcal{B} SM \mathcal{H} iggs-to- \mathcal{H} iggs \mathcal{D} ecays #### Increase Precision in Higgs-to-Higgs Decays: - * NLO corrections for C2HDM, N2HDM, NMSSM - possibility of decays chains with consecutive Higgs-to-Higgs decays - possibility of Higgs pair with different Higgs bosons in the final state - \diamond models differ in underlying symmetries \leftarrow differently affected by constraints \rightsquigarrow variations in their signatures \rightarrow link to A3a #### • Investigations: - Estimate theory uncertainty (different renormalization schemes implemented) - ⋄ Compare with effective coupling results - Implementation in computer codes - Comparative analysis including all constraints \rightarrow link to A3a ## ${\mathcal H}$ igher- ${\mathcal O}$ rder ${\mathcal C}$ orrections to ${\mathcal H}$ iggs ${\mathcal B}$ oson ${\mathcal M}$ asses ### \mathcal{S} upersymmetric \mathcal{H} iggs \mathcal{M} ass \mathcal{C} omputations - Status of MSSM and NMSSM Higher-Order Corrections: - * Precise predictions - $-m_{h, \mathsf{MSSM}}$: up to 2-loop and dominant 3-loop (real+complex MSSM) [Okada eal;Ellis eal; Brignole eal;Haber,Hempfling;Chankowski eal;Dabelstein;Pierce eal;Barbieri eal;Espinosa,Quiros;Casas eal;Carena eal;Heinemeyer eal;Zhang;Degrassi eal;Dedes eal;Martin; Borowka eal;Draper,Lee;Harlander eal;Kant eal;Staub,Porod;Goodsell eal;Bahl,Hollik;Bagnaschi eal;Kunz eal;Mihaila,Zerf; ...] - $-m_{h, \mathsf{NMSSM}}$: up to 2-loop (real+complex) NMSSM [Ellwanger eal; Elliott eal; Pandita; Degrassi, Slavich; Staub eal; King eal; Graf eal; Ender eal; Drechsel eal; MM eal; Goodsell eal; Ham eal; Funakubo eal; Cheung eal; ...] - * Estimate of uncertainty - MSSM: ± 3 GeV [Degrassi eal; Allanach eal] - NMSSM: comparison of DR calculations [Staub eal]; comparison of OS calculations [Drechsel eal] ### \mathcal{S} upersymmetric \mathcal{H} iggs \mathcal{M} ass \mathcal{C} omputations \mathcal{C} ontinued - Numerous Program Packages for Higgs Mass Computations: FeynHiggs, FlexibleSUSY, H3m, Himalaya, NMSSMCALC, NMSSMTools, SARAH, SoftSUSY, SPheno, ... - Recent and ongoing activities: - * Lightest MSSM Higgs mass at three loop [Reyes, Fazio, '19], second calculation after [Harlander, Kant, Mihaila, Steinhauser, '10] - * light CP-even Higgs mass resummed to 4th logarithmic order (heavy SUSY spectrum); three-loop matching coefficient to $\mathcal{O}(\alpha_t^2\alpha_s^2)$ implemented in Himalaya [Harlander, Klappert, Franco, Voigt, '18] - * Finalization of $\mathcal{O}(\alpha_t^2)$ corrections to CP-violating NMSSM Higgs masses [Gröber, Krause, MMM, Nhung, Rzehak] ## \mathcal{M} SSM \mathcal{M} ass \mathcal{P} rojects • LHC Higgs Mass Determination: $\mathcal{O}(100 \text{ MeV})$; however in large parts of SUSY parameter space three-loop corrections to lightest Higgs mass from strong sector of MSSM are of $\mathcal{O}(\text{few GeV}) \rightsquigarrow$ #### Planned Projects: - * Complement three-loop $\mathcal{O}(\alpha_t \alpha_s^2)$ corrections [Kant, Harlander, Mihaila, Steinhauser, '10] by $\mathcal{O}(\alpha_b \alpha_s^2)$, $\mathcal{O}(\alpha_{t,b}^2 \alpha_s)$, $\mathcal{O}(\alpha_{t,b}^3)$ corrections at vanishing external momentum - * Implementation of the corrections in H3m, provide also stand-alone C++ code similar to Himalaya \rightsquigarrow link to other programs possible \rightarrow close collaboration w/ Aachen - * leading three-loop corrections of $\mathcal{O}(1 \text{ GeV}) \rightsquigarrow$ obtain information about four-loop term (depending on project progress) \rightarrow future beyond current CRC ## $\mathcal{N}MSSM$ $\mathcal{M}ass$ $\mathcal{P}rojects$ • NMSSM Mass Theory Predictions: Higher-order corrections to NMSSM Higgs masses need to catch up with MSSM mass predictions, with experimental accuracy ↔ #### Ongoing: [Gröber, Krause, MMM, Nhung, Rzehak] - * $\mathcal{O}(lpha_t^2)$ corrections in the gaugeless limit at vanishing external momentum - * based on mixed OS- \overline{DR} renormalization scheme \leftarrow other NMSSM codes at this loop level in \overline{DR} scheme - * possibility to choose between OS and \overline{DR} renormalization possibility to estimate theoretical uncertainty due to missing higher-order corrections based on renormalization scheme change ## $\mathcal{N}MSSM$ $\mathcal{M}ass$ $\mathcal{P}rojects$ #### • Planned Projects: - * Complement $\mathcal{O}(\alpha_t \alpha_s + \alpha_t^2)$ corrections [Gröber eal; NMSSMCALC] by $\mathcal{O}(\alpha_t \alpha_\lambda)$, $\mathcal{O}(\alpha_\lambda^2)$ corrections - * implementation in NMSSMCALC - * challenge treatment of massless Goldstones in self-energies w/ vanishing external momentum (possible soluations [Brucherseifer eal; Kumar, Martin; Goodsell, Staub]) - * $\mathcal{O}(\alpha_t \alpha_\kappa)$, $\mathcal{O}(\alpha_\lambda \alpha_\kappa)$, $\mathcal{O}(\alpha_\kappa^2)$ corrections if time permits \to future beyond current CRC - * future: $\mathcal{O}(\alpha_t \alpha_b)$, $\mathcal{O}(\alpha_b^2)$ Link MSSM and NMSSM results and codes to get most precise prediction for NMSSM masses in MSSM limit \rightarrow close collaboration ITP, TTP at KIT and Aachen $$\alpha_{\lambda/\kappa} \equiv \lambda^2/(4\pi), \ \kappa^2/(4\pi)$$ ## \mathcal{L} inks to \mathcal{O} ther \mathcal{P} rojects - ♦ EFT analyses of A2a, A2b can be mapped onto complete models of A3b - ⋄ insights gained in A3a feed back into A3b and vice versa - ⋄ insights gained on NP in the top sector and heavy top partners in B2b, C3a feed back into higher-order corrections to BSM Higgs observables - ⋄ dito for information gained on flavour and CP observables from C - ⋄ overlap on technical questions with A1a, C1a, C1b # \mathcal{T} hank \mathcal{Y} ou \mathcal{F} or \mathcal{Y} our \mathcal{A} ttention! ### Scatter Plots C2HDM [Basler, Dawson, Englert, MM '18] - Left: C2HDM T1 $hh \to 2b2\gamma$; large $t\bar{t}$ rates responsible for exclusion beyond HiggsBounds - Right: C2HDM T1 $hH_{\downarrow} \rightarrow 4b$ enhanced by about a factor of 3 ## \mathcal{D} i- \mathcal{H} iggs \mathcal{P} roduction \mathcal{B} eyond the \mathcal{S} M - Beyond SM HH production: Cross sections can be considerably larger: ex.: composite Higgs - * different λ_{3H} ; * novel couplings; * novel particles in the loop; * resonant enhancement ## $\mathcal{D}i$ - $\mathcal{H}iggs$ $\mathcal{P}roduction$ $\mathcal{B}eyond$ the $\mathcal{S}M$ • Beyond SM HH production: Cross sections can be considerably larger: ex.: NMSSM * different λ_{3H} ; * novel couplings; * novel particles in the loop; * resonant enhancement ## $\mathcal{D}i$ - $\mathcal{H}iggs$ $\mathcal{P}roduction$ $\mathcal{B}eyond$ the $\mathcal{S}M$ - How large can λ_{3H} be? $\lambda_{3H} = \kappa_{\lambda} \lambda_{3H}^{\text{SM}}$ - Expect the unexpected: - * Higgs-to-Higgs cascade decays in non-minimal Higgs sectors \[\simple \text{Exotic multi-fermion and/or multi-photon final states}\] - Higher-order corrections to σ_{hh} : - available in large loop particle mass limit - K-factor typically of $\mathcal{O}(1.5-2)$ - new physics effects on K-factors in general small - new physics effects on absolute cross section large - for higher-order corrections for BSM Higgs pair production, see [Dawson,Dittmaier,Spira; Agostini,Degrassi,Gröber,Slavich; Dawson,Lewis; Gröber,MM,Spira,Streicher; Gröber,MM,Spira; Hespel,Lopez-Val,Vryonidou; Moyoti eal; ...] #### **SM** Calculation $$\sigma_{\rm NLO} = \sigma_{\rm LO} + \Delta \sigma_{\rm virt} + \Delta \sigma_{gg} + \Delta \sigma_{qg} + \Delta \sigma_{q\bar{q}},$$ with $$\sigma_{\text{LO}} = \int_{\tau_0}^{1} d\tau \frac{d\mathcal{L}^{gg}}{d\tau} \hat{\sigma}_{\text{LO}} \left(Q^2 = \tau s \right),$$ $$\Delta \sigma_{\text{virt}} = \frac{\alpha_s \left(\mu_R^2 \right)}{\pi} \int_{\tau_0}^{1} d\tau \frac{d\mathcal{L}^{gg}}{d\tau} \hat{\sigma}_{\text{LO}} \left(Q^2 = \tau s \right) C_{\text{virt}} \left(Q^2 \right),$$ $$\Delta \sigma_{ij} = \frac{\alpha_s \left(\mu_R^2 \right)}{\pi} \int_{\tau_0}^{1} d\tau \frac{d\mathcal{L}^{ij}}{d\tau} \int_{\frac{\tau_0}{\tau}}^{1} \frac{dz}{z} \hat{\sigma}_{\text{LO}} \left(Q^2 = z\tau s \right) C_{ij}(z)$$ where $$C_{gg} = -z P_{gg}(z) \log \frac{\mu_F^2}{\tau s} + d_{gg}(z) + 6[1 + z^4 + (1 - z)^4] \left(\frac{\log(1 - z)}{1 - z}\right)_+,$$ $$C_{gq} = -\frac{z}{2} P_{gq}(z) \log \frac{\mu_F^2}{\tau s (1 - z)^2} + d_{gq}(z),$$ $$C_{q\bar{q}} = d_{q\bar{q}}(z)$$ ## SM Calculation Continued In the heavy top limit (HTL) $$C_{\text{virt}} \to \pi^2 + \frac{11}{2} + C_{\triangle\triangle}$$ $$d_{gg} \to -\frac{11}{2} (1-z)^3$$ $$d_{gq} \to = \frac{2}{3} z^2 - (1-z)^2,$$ $$d_{q\bar{q}} \to \frac{32}{27} (1-z)^3$$ #### SM Calculation: Virtual Corrections #### Virtual corrections 47 generic box diagrams, 8 triangle diagrams (\leftarrow single Higgs), 1PR ($\leftarrow H \rightarrow Z \gamma$) - * full diagram w/o tensor reduction \rightarrow 6-dim. Feynman integral - * UV singularities: end-point subtractions $$\int_0^1 dx \frac{f(x)}{(1-x)^{1-\epsilon}} = \int_0^1 dx \frac{f(1)}{(1-x)^{1-\epsilon}} + \int_0^1 dx \frac{f(x)-f(1)}{(1-x)^{1-\epsilon}} = \frac{f(1)}{\epsilon} + \int_0^1 dx \frac{f(x)-f(1)}{1-x} + \mathcal{O}(\epsilon)$$ - * IR singularities: IR subtraction (based on struc. of integrand and relative to HTL) - * thresholds: $Q^2 \ge 0, 4m_t^2 \leadsto \text{IBP} \leadsto \text{reduction of power of denominator}$ $[m_t^2 \to m_t^2 (1-ih)]$ $$\int_0^1 dx \frac{f(x)}{(a+bx)^3} = \frac{f(0)}{2a^2b} - \frac{f(1)}{2b(a+b)^2} + \int_0^1 dx \frac{f'(x)}{2b(a+bx)^2}$$ #### SM Calculation: Virtual and Real Corrections - Virtual corrections continued: - * Renormalization: α_s : $\overline{\mathsf{MS}}$, 5 flavours, m_t : on-shell - * Phase space integration: 7-dim. integrals for $d\sigma/dQ^2$ - * Infrared mass effects: after subtraction of HTL [adding back HTL results obtained with HPAIR] - * Richardson extrapolation: extraction to narrow-width approximation $(h \to 0)$ #### • Real Corrections: - full matrix elements generated with FeynArts and FormCalc - matrix elements in HTL involving full LO sub-matrix elements subtracted → IR-, COLL-finite [adding back HTL results obtained from HPAIR] ## \mathcal{L} oop \mathcal{C} orrected \mathcal{T} rilinear \mathcal{H} iggs \mathcal{S} elf- \mathcal{C} oupling - **Higgs mass and self-couplings:** determined from Higgs potential → consistent description of Higgs sector at higher order requires loop corrections to masses and self-couplings - ⇒ determination of higher order corrections to trilinear Higgs self-couplings Dao, MMM, Streicher, Walz '13 $$\delta \equiv \frac{\mathsf{BR}^{\mathsf{loop}} - \mathsf{BR}^{\mathsf{tree}}}{\mathsf{BR}^{\mathsf{tree}}}$$ $$\delta \equiv \frac{\mathsf{BR}^{\mathsf{loop}} - \mathsf{BR}^{\mathsf{tree}}}{\mathsf{BR}^{\mathsf{tree}}}$$ ## \mathcal{D} istinction of \mathcal{C} xSM and \mathcal{N} MSSM [Costa, MM, Sampaio, Santos '16] Red: NMSSM: $\Phi \equiv h_3$, $h_{125} \equiv h_2$ and $\varphi \equiv h_1$ Green: NMSSM: $\Phi \equiv A_2$, $h_{125} \equiv h_{1,2}$ and $\varphi \equiv A_1$ ## \mathcal{D} istinction of \mathcal{C} xSM and \mathcal{N} MSSM [Costa, MM, Sampaio, Santos '16] Red: NMSSM: $\Phi \equiv h_3$, $h_{125} \equiv h_1$ and $\varphi \equiv h_2$ Green: NMSSM: $\Phi \equiv A_2$, $h_{125} \equiv h_{1,2}$ and $\varphi \equiv A_1$ # \mathcal{I} mpact of \mathcal{L} oop- \mathcal{C} orrected \mathcal{S} elf- \mathcal{C} oupling on $(\mathcal{N}$ on- $)\mathcal{E}$ xclusion [Dao, MMM, Streicher, Walz] $H_2 \equiv 125$ GeV Higgs; dashed - tree-level; full - loop-corrected; red - excluded