BACHELOR THESIS PROGRESS SO FAR

RAFAEL DE ANDRADE

SINGLE TOP PRODUCTION AT FCC-EE

1

 \bigcirc

RECAP FROM THE LAST ONE:

- Learnt how to install and use different programs:
 - Madgraph
 - Pythia-Delphes
 - Generally how Linux Terminal Usage works
- Learnt how to use Stage1 Analysis
- Learnt how to read ROOT files and use them in python

PROCESS:

- The process in question is $e + e - > t v | \sim b \sim e$
- Example feynmann diagramm by Madgraph:

- Exactly 1 electron from non-top part, as imposed by the given process
- However the other side will have the top decay into a bottom and W boson
 - The W will either decay into Hadrons or Leptons
 - The leptonic decays will always end up with exactly 2 jets
 - In case of a leptonic decay, it'd turn into the (anti)lepton and corresponding neutrino
 - Theoretically any lepton, but tau decays too quick to be directly detected

 Amounts before and after filtering based on the Reco Selection per Case:

Generated Amounts at 240GeV with 300k total events:

Reconstructed Amounts at GeV with 300k total events:

6

Ws: Tops: Muons: Electrons: 160000 -Pre-Filtering Pre-Filtering Pre-Filtering Pre-Filtering Post-Filtering Post-Filtering Post-Filtering Post-Filtering 100000 Ker ò ò Amount per Event Amount per Event Amount per Event Amount per Event

Generated Amounts at 240GeV with 300k total events:

Reconstructed Amounts at GeV with 300k total events:

FIND OPTIMAL SELECTION THRESHOLDS:

- To reduce the amount of processes to study in total, a selection based on momentum of different particles is introduced
- Also filtered based on isolation with 0,01 < r < 0,5 and with E < 25% of the Lepton Energy
- First, all events are put through a filter based on Gen Information, requiring Genlevel objects to match the case requirement listed prior
- To find the optimal selection (momentum) threshold, one wants to have the highest ratio between Reco Selection and Gen Filtered counts, namely to maximize selection efficiency through threshold momentum

9

FIND OPTIMAL SELECTION THRESHOLDS:

• Example of plots for the optimal selection thresholds (Case1):

FIND OPTIMAL SELECTION THRESHOLDS:

• Results:

Case-ID	Threshold $p_{\mu}(GeV)$	Threshold $p_e(GeV)$	Threshold $p_\gamma(GeV)$	Threshold $p_{Jets}(GeV)$
1 ($n_{\mu}=1$, $n_{e}=1$, $n_{jets}=2$)	15	10	1	31
2 ($n_{\mu}=0$, $n_{e}=2$, $n_{jets}=2$)	10	9	1	28

• However the selection thresholds need to be impartial: we don't know which case it is in advance, and cannot impose a certain one

11

• A compromise was chosen as:

1	Threshold $p_{\mu}(GeV)$	Threshold $p_e(GeV)$	Threshold $p_\gamma(GeV)$	Threshold $p_{Jets}(GeV)$
Compromise:	12	10	1	30

- With the selection thresholds, a full analysis can be used for different Energies (parallel beam energies)
- Event Weight:

 $W_{Events} = rac{L \cdot \sigma}{N_0}$

• Event Yield:

 $\mathrm{N}_{Event;i} = \Sigma N_{Rec;i} \cdot W_{Event;i}$

Case 1:

σ (pb)	E	$R_{Rec-Gen}$	W_{Events}	N_{Events}
1.55024e-09	200	0.652997	5.58086e-08	0.00111522
2.3696e-08	210	0.665897	8.53056e-07	0.015506
1.183e-07	220	0.663691	4.2588e-06	0.0709346
3.674e-07	230	0.653496	1.32264e-05	0.20038
8.8945e-07	240	0.642787	3.20202e-05	0.437844
1.8945e-06	250	0.628119	6.8202e-05	0.85498
4.273e-06	260	0.609473	0.000153828	1.90424
1.8905e-05	270	0.594282	0.00068058	9.21029
6.331e-05	280	0.574671	0.00227916	26.1442

Case 2:

σ (pb)	E	$R_{Rec-Gen}$	W_{Events}	N_{Events}
1.55024e-09	200	0.639643	5.58086e-08	0.00107175
2.3696e-08	210	0.655456	8.53056e-07	0.0154284
1.183e-07	220	0.654692	4.2588e-06	0.0700062
3.674e-07	230	0.643777	1.32264e-05	0.196293
8.8945e-07	240	0.635105	3.20202e-05	0.433201
1.8945e-06	250	0.615255	6.8202e-05	0.848296
4.273e-06	260	0.596508	0.000153828	1.84455
1.8905e-05	270	0.577394	0.00068058	9.04287
6.331e-05	280	0.565696	0.00227916	25.4149

Case 1:

Case 2:

CONCLUSION AND NEXT STEPS

- Set up a multi-staged workflow to study selection efficieny for single top events
 - Focusing on electron/muon final states
- Optimized (momentum) threshold to achieve reasonable selection efficiency
- Low Cross Section from the process in general
 - Very few events are to be expected in the range of 200-280 GeV
 - More studies on how production cross section scales with the phase space selection (Alejandro)
- Background files are being processed to evaluate their event yield
- If SM isn't sensitive enough we could study FCNC production

16