
Hack the Turbulence:
Enhancing Flow Resolution with AI

Hesam Tofighian
Karlsruhe Institute of Technology (KIT) - KCDS

16. - 19. September 2025

Abstract. Turbulence spans a vast range of interacting scales. Resolving all dynamically
relevant eddies with DNS is expensive, whereas coarse simulations are fast but miss crucial
small-scale physics. In this hackathon you will develop deep-learning models that map low-
resolution turbulent velocity fields to high-resolution reconstructions while respecting the un-
derlying physics. You will work with homogeneous isotropic turbulence (HIT) box data, receive
a baseline PyTorch implementation (single-GPU/CPU and multi-GPU DDP) code, and use
KIT’s compute resources.

Scientific Background: How Turbulence Emerges

Turbulent motion is governed by the incompressible Navier–Stokes (NS) equations with forcing
[2]:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ F, ∇ · u = 0, (1)

where u = (u, v, w) is velocity, p is pressure, ν is kinematic viscosity, and F is an external body
force (e.g. large-scale stirring sustaining HIT).

Inertia vs. diffusion. The nonlinear advection (u·∇)u redistributes momentum and transfers
energy across scales; the viscous term ν∇2u dissipates it. Their competition is summarized by
the Reynolds number Re = UL/ν. High Re implies advection-dominated dynamics, instability,
and ultimately turbulence. Let ω = ∇× u denote vorticity. If we visualize iso-surfaces of the
vorticity magnitude |ω| in a turbulent flow, we observe multi-scale, tube-like coherent structures
concentrated in regions of intense rotation; see Fig. 3.

Taking the curl of Eq. (1) yields

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∇2ω +∇× F. (2)

The vortex-stretching term (ω · ∇)u (present in 3D) amplifies |ω| when a vortex tube is elon-
gated, sharpening gradients and feeding smaller scales. Diffusion ν∇2ω smooths these gradients;
stretching intensifies until diffusion becomes comparable, or the structure becomes unstable
and fragments into smaller eddies. This stretch→ fold→ reconnect/cancel cycle underpins the
forward cascade from large to small scales; see Fig. 2. The cascade continues down to the
Kolmogorov length scale [2]. Capturing all motions down to Kolmogorov length scale is pro-
hibitively expensive in simulations, which motivates a data-driven super-resolution approach
[4]: reconstruct the missing small-scale structures from coarse fields.

1

Figure 1: Iso-surfaces of vorticity magnitude |ω| in homogeneous isotropic turbulence (HIT).

Figure 2: Schematic of vortex-tube dynamics: stretching and amplification, folding, and reconnec-
tion/cancellation, driving a cascade of smaller structures [1].

Hackathon Task

Goal. Learn a mapping G : LR → HR that reconstructs high-resolution velocity fields from
filtered/downsampled inputs while remaining faithful to physics and turbulence statistics.

You will receive:

• HIT dataset [3]: 3D velocity fields (u, v, w) stored as NumPy arrays; high-resolution sam-
ples and corresponding low-resolution inputs obtained by filtering and down-sampling.

• Baseline code: a PyTorch 3D CNN generator with residual-in-residual dense blocks (RRDB)
[5], plus data augmentation and physics-aware losses.

2

What you can improve (suggestions). Try U-Nets, attention blocks, physics-informed
losses, or matching spectra, adversarial training, Fourier/Neural Operator architectures, Diffu-
sion models, Kolmogorov arnold neural network, etc.

Dataset and Format

HIT boxes. The dataset consists of periodic 3D cubes representing homogeneous isotropic
turbulence (HIT) with velocity components (u, v, w) [3]. Each full-resolution snapshot has
size 10243 with three channels corresponding to the velocity components, stored in the shape
[1024, 1024, 1024, 3].

Sub-box extraction. To alleviate memory constraints, each large cube has already been
partitioned into smaller sub-boxes of size 723. Participants can directly use these pre-split sub-
boxes or employ the provided script makeSubBoxes.py to generate sub-boxes of arbitrary size
for training.

Evaluation

Participants will be provided with 3D low-resolution HIT snapshots and tasked with recon-
structing high-resolution velocity fields at 4× resolution in each spatial direction with
their model. This means, for example, that a coarse cube of size 503 must be super-resolved to
2003.

Models will be compared by a mix of accuracy and physics:

• Reconstruction: Mean squared error (MSE); gradient error.

• Physics: Divergence norm, extreme events in vorticity/gradient statistics, energy spectra
recovery.

• Computation: Computational efficiency during inference.

HPC: Running on HAICORE@KIT (Helmholtz AI)

Registration. All members of Helmholtz Association institutions can self-register for HAICORE@KIT.
Use the online form: haicore/registration.

Login (SSH). After your account is approved, log in via:

ssh username@haicore.scc.kit.edu

Workspace management. Allocate a project workspace (persistent project storage):

ws_allocate name_of_workSpace

List/recall your workspaces:

ws_list

Copy code/data. From your local machine to your HAICORE workspace:

scp -r data_directory username@haicore.scc.kit.edu:/work_space_directory

3

https://www.nhr.kit.edu/userdocs/haicore/registration/

Python environment. Create and activate a virtual environment (and optionally add acti-
vation to /.bashrc):

python3 -m venv kcdsEnv

source kcdsEnv/bin/activate

(optional) echo "source ~/kcdsEnv/bin/activate" >> ~/.bashrc

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

pip install numpy matplotlib

Preparing HIT sub-boxes. The raw snapshots are 10243×3 (velocity components). Work-
ing directly at full resolution exceeds typical GPU memory. The snippet below circularly pads
by 4 cells on each face (for a 93 smoothing filter) and extracts 643 interior sub-boxes, yielding
723 padded tiles.

import numpy as np

import torch

import torch.nn.functional as F

import os

Load a snapshot shaped [1024, 1024, 1024, 3] (channel-last)

velocity = np.load(’U_T1.npy’) # shape: [D, H, W, 3]

velocity = torch.from_numpy(velocity).permute(3,0,1,2) # -> [3, D, H, W]

velocity = velocity.unsqueeze(0) # -> [1, 3, D, H, W]

Circular pad by 4 on each side of D, H, W -> [1, 3, 1032, 1032, 1032]

velocity = F.pad(velocity, (4,4, 4,4, 4,4), mode=’circular’)

Convert back to NumPy for saving

velocity = velocity.numpy()

Make output directory

output_dir = "./sub_boxes"

os.makedirs(output_dir, exist_ok=True)

Extract 64^3 interior per tile, stored with 4-cell pad on each face (72^3 total)

for i in range(0, 1024, 64):

for j in range(0, 1024, 64):

for k in range(0, 1024, 64):

sub_box = velocity[:, :, i:i+72, j:j+72, k:k+72] # [1, 3, 72, 72, 72]

fname = f"U_JH_T1_{i}_{j}_{k}.npy"

np.save(os.path.join(output_dir, fname), sub_box)

You can adjust the interior size and padding to match your filter width.

Submitting training jobs (SLURM). Create run train.sh:

#!/bin/bash

#SBATCH --account=kcds

#SBATCH --partition=normal

#SBATCH --job-name=myTraining

#SBATCH --ntasks=1

#SBATCH --gres=gpu:full:2

4

#SBATCH --time=01:00:00

#SBATCH --mem=64G

#SBATCH --cpus-per-task=8

#SBATCH --mail-type=ALL

##SBATCH --mail-user=your_email@domain

#SBATCH --output=training_%j.log

#SBATCH --error=training_%j.err

module purge

export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True

source ~/kcdsEnv/bin/activate

python train_DataParallel.py

Submit and monitor:

sbatch run_train.sh

Inference. After training, run:

python inference.py

Figure 3: Output of the inference.py.

References

[1] I Cherunova and N Kornev. Lectures on computational fluid dynamics. bookboon. com,
2015.

[2] Stephen B Pope. Turbulent flows. Measurement Science and Technology, 12(11):2020–2021,
2001.

[3] FORCED ISOTROPIC TURBULENCE DATA SET. The johns hopkins turbulence
databases (jhtdb).

[4] Filippos Sofos and Dimitris Drikakis. A review of deep learning for super-resolution in fluid
flows. Physics of Fluids, 37(4), 2025.

[5] Hesam Tofighian, Jordan A Denev, and Nikolai Kornev. A conditional deep learning model
for super-resolution reconstruction of small-scale turbulent structures in particle-laden flows.
Physics of Fluids, 36(11), 2024.

5

