

Atomic tritium source activities

Caroline Rodenbeck for the KAMATE collaboration

KATRIN++ call, June 23, 2025

Steps towards an atomic tritium source

Beam for Atomic Tritium Experiment (BeATE)

Goal: Demonstrate tritium operation in *simple setup* Use standard vacuum parts to investigate:

Tritium compatibility

- Tritium recovery
- Isotopic effects

Measure atomic fraction with differentially pumped mass spectrometer (shroud around mass spec.)

Input for KAMATE

Commissioning of tectra h-flux \rightarrow Source comparison in KAMATE 0.5 First tritium operation experience \rightarrow KAMATE 1.0

BeATE-Status

- System moved from cold lab to warm lab
- Added camera for alignment observations

Next steps:

- 1. "FaroArm" measurements of shroud and mass spectrometer
- 2. Align mass spectrometer and shroud inside shroud and cross, afterwards mount cross
- 3. Leakage test of vacuum system
- 4. Electrical check of Loops system
- 5. Leakage test of glove box
- 6. Commissioning of gas inlet
- 7. Measurements: Check for atoms with H2, D2 before inserting T2

View on mass spectrometer inside differential pumping geometry (shroud)

KAMATE 0.5

Primary goals:

- Identify best source for later KAMATE stages: thermal dissociation vs. RF-discharge
- Retire necessity for tilt mechanism in later KAMATE stages

KAMATE 0.5 – Tectra@MATS

- Goal: Use tools available at the MATS to measure the beam composition and shape of the three different sources.
- Challenges:
 - Diagnostic tools still in R&D phase
 - \rightarrow Use source comparison for further development of tools.
 - No significant atom flux with measured Tectra so far (@BeATE-setup)
- Physics questions for measurements:
 - Does the tectra emit atoms?
 - Can we reach the dissociation maximum for high temperatures?
 - What is the relative atom intensity inside beam? (Wire detector)
 - What is the dissociation efficiency of the tectra?
 - What is the beam spread at the mass spectrometer position?
 - What is the capillary temperature?
- Current status
 - Measurements delayed due to major electrical reworks of MATS (at least 4 weeks)

Plasma source

Commissioning of RF-discharge plasma source SVTA RF 4.5

- RF coil produces inductively coupled hydrogen plasma (H⁺, H₂⁺, H₃⁺, e⁻)
- Dissociation by inelastic collisions with electrons inside the plasma
 - Frequency: 13.56 MHz
 - RF Power: 250 450 W
- Throughputs: 0.2 1 sccm

Quantify atomic fraction with:

- 1. Spectral measurement
- 2. Graphene loading

Atomic density inside the plasma

Idea

- Measure spectra with different drive powers and gas flows
- Intensity ratios of atomic and molecular lines can be compared to theoretical calculations (Collisional Radiative model)
- Final output: atomic density, electron temperature, electron density

Ongoing

- Verify calibration of spectrometer
- Measurement campaign 1 ongoing
 - Flow: 0.5 sccm
 - Drive Powers: 250W, 350W, 450W, 550W
- Impending
 - Try to interpret the data and produce first intensity ratios

Content copied from status slides of David Frese

Help from Prof.Fantz-group

Hydrogen plasma spectrum

Hydrogenation of graphene

Graphene is selective to atomic hydrogen:

In-situ:

- resistivity measurement of graphene sample
- heating of graphene sample

Ex-situ:

- SEM
- Raman Spectroscopy

Loading of graphene samples ongoing!

Content copied from status slides of David Frese

Summary and outlook

Three different sources under investigation

- Two thermal sources: HABS (Mainz), Tectra (TLK)
- RF-discharge plasma source (TLK)

Four different ways to characterize atom density under development:

- 1. Mass spectrometer measurements (BeATE, MATS)
- 2. Wire detector measurements (MATS)
- 3. Graphene hydrogenation
 - Raman spectroscopy (ex-situ)
 - Resistivity measurement (in-situ)
- 4. Balmer & Fulcher line spectrum (← only for plasma source)

Coming up next:

- 1. Commissioning measurements BeATE in hot lab
- 2. Tectra@MATS measurements (KAMATE 0.5) (delayed by at least 4 weeks)
- 3. Raman spectroscopy of graphene samples

