

Contribution ID: 120

Type: Talk

High-temperature ^{205}Tl decay clarifies ^{205}Pb dating in early Solar System

At the boundary between atomic physics and nuclear physics one can find exotic decay modes such as the case of ^{205}Tl . Being a stable nuclear species on earth, ^{205}Tl starts to beta decay, when it is fully ionized. This so-termed bound-state beta decay plays an indirect, yet crucial role in dating our solar system via the nuclear chronometer ^{205}Pb . In order to make use of the long-lived decay (17.3 My) for dating, the unknown half-life of the bound-state beta decay had to be measured first.

The complex experiment was carried out at GSI/FAIR using the ESR storage ring. It involved the production of ^{205}Tl from a stable ^{206}Pb beam as well as accumulation and storage of high intensities in the ESR. Finally, the ratio of mother-to-daughter nuclei after different waiting times was measured using non-destructive Schottky detectors and enabled the evaluation of a half-life of 291 days for this exotic decay.

Authors: Dr GUMBERIDZE, Alexandre (GSI Helmholtzzentrum); GLORIUS, Jan (GSI Helmholtzzentrum)

Presenter: Dr GUMBERIDZE, Alexandre (GSI Helmholtzzentrum)

Session Classification: Parallel: Matter (RT1)

Track Classification: RT1