

Contribution ID: 205

Type: **Talk**

Focussed Ions for Materials Design

Focused ion beam (FIB) technology has evolved from a versatile microfabrication and imaging tool into a powerful platform for atomic-scale materials design, enabling the modification, doping and restructuring materials with nanometer precision. Our research advances FIB capabilities to explore new pathways for unprecedented applications [1]. For instance, we recently demonstrated the local phase transformation of β - to γ - Ga_2O_3 through ion-induced lattice disorder, enabling site-specific tuning of electronic and optical properties for advanced device applications [2,3].

We also developed an ultralong, high-density data storage concept in radiation-resistant silicon carbide, based on optically active atomic-scale defects, allowing multi-layer, diffraction-unlimited optical data archiving beyond conventional media [4]. Certain ion species can induce defects that form color centers acting as single-photon emitters for quantum photonics; for example, Si^+ [5] and C^+ ions [6] have been used to create G- and W-centers in silicon that emit in the telecom O-band, ideal for fiber-optic communication to create long distance quantum networks.

Finally, we present our latest efforts toward deterministic single-ion implantation of group V donors in silicon for spin qubits, as well as isotopic purification of ^{28}Si via high-fluence implantation, paving the way for ultra-coherent quantum devices [7]. These results highlight the versatility of FIB technology as a precise tool for materials engineering at the nanoscale, bridging quantum technologies, advanced photonics, and high-density data storage.

- [1] Höflich, Katja, et al. *Applied Physics Reviews* 10.4 (2023).
- [2] Azarov, Alexander, et al. *Nature Communications* 14.1 (2023): 4855.
- [3] Bektas, Umutcan, et al. *arXiv preprint arXiv:2505.03541* (2025).
- [4] Hollenbach, M., et al. *Advanced Functional Materials* 34.27 (2024): 2313413.
- [5] Hollenbach, M., et al. *Nature Communications* 13.1 (2022): 7683.
- [6] Hollenbach, M., et al. *Advanced Quantum Technologies* 8.1 (2025): 2400184.
- [7] Lim, Shao Qi, et al. *Physical Review Materials* 9.7 (2025): 076202.

Author: KLINGNER, Nico

Co-authors: HOLLENBACH, M.; ASTAKHOV, G.; ZID, A.; BEKTAS, U.; HLAWACEK, G.; FACSKO, S.

Presenter: KLINGNER, Nico

Session Classification: Plenary 3

Track Classification: RT2