

Astroteilchenphysik in Deutschland

Status und Perspektiven 2014

Direct neutrino mass experiments

Kathrin Valerius, KIT Center Elementary Particle and Astroparticle Physics (KCETA)

Astroteilchenphysik in Deutschland

Status und Perspektiven 2014

Direct neutrino mass experiments

Kathrin Valerius, KIT Center Elementary Particle and Astroparticle Physics (KCETA)

Neutrino masses

→ W. Rodejohann, Neutrino properties

Wealth of v oscillation data:

- Neutrino mixing & $m(v_i) \neq 0$ established
- Oscillation experiments: tiny mass splittings

 $\Delta m_{\text{atm}}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \,\text{eV}^2$ $\Delta m_{\text{sol}}^2 = (7.5 \pm 0.2) \times 10^{-5} \,\text{eV}^2 \quad (\text{PDG}, 2014)$

- Which mass ordering (normal, inverted)?
- What is the absolute v mass scale?

So far: only **upper** (< 2 eV) and **lower bounds** (>0.01 resp. >0.05 eV)

Complementary paths towards the v mass scale

		e e e e e e e e e e e e e e e e e e e	
ΤοοΙ	Cosmology CMB+LSS+	Neutrinoless double β-decay	β-decay endpoint and EC
Observable	$m_{\Sigma}:=\sum_{i}m_{i}$	$m_{\beta\beta} := \left \sum_{i} U_{ei}^2 m_i \right $	$m_{\beta} := \left(\sum_{i} U_{ei} ^2 m_i^2\right)^{1/2}$
Present upper limit	0.2 – 1 eV	0.2 – 0.4 eV	2 eV
Potential	20 – 50 meV	20 – 50 meV	200 meV
Model dependence	yes	yes	no: direct meas. from kinematics

 \rightarrow B. Schwingenheuer

Direct neutrino mass measurement

Imprint of m_{μ} on endpoint region of β spectrum (similar for EC): $\frac{\mathrm{d}\,N}{\mathrm{d}\,E}$

$$= C \cdot F(Z, E) \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - (m^2(v_e))}$$

$$= m^2(v_e) = \sum |U_{ei}|^2 m_i^2$$

observable: effective squared mass

Key requirements

- Source isotope: •
 - Low spectral endpoint Q
 - Large decay rate (short $T_{1/2}$)
- Instrument:
 - Excellent energy resolution
 - Very low background

Direct neutrino mass measurement

Imprint of m_v on endpoint region of β spectrum (similar for EC):

$$\frac{\mathrm{d}N}{\mathrm{d}E} = C \cdot F(Z, E) \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - (m^2(v_e))}$$

$$m^2(\mathbf{v}_e) = \sum |U_{ei}|^2 m_i^2$$

observable: effective squared mass

Key requirements

- Source isotope:
 - Low spectral endpoint Q
 - Large decay rate (short T_{1/2})
- Instrument:
 - Excellent energy resolution
 - Very low background

Experimental options				
	³ Η (β)	¹⁸⁷ Re (β)	¹⁶³ Ho (EC)	
Q value	18.6 keV	2.5 keV	~2.5 keV	
T _{1/2}	12.3 yr	41 Gyr	4.5 kyr	
technique	spectrometer	cryogenic micro-calorimeter		
	source ≠ det.	source within detector		
present m(v) sens.	< 2 eV Mainz, Troitsk ∼2004	< 15-30 eV Milan, Genoa ~2004	< 225 eV Livermore 1987	
	$\overline{v_{e}}$	$\overline{v_{e}}$	$\left(v_{e}\right)$	

Tritium β-decay experiments

Spectroscopic technique for tritium β-decay

KATRIN: overview

KATRIN: main components

→ Poster

S. Rupp

Source & transport section

- Windowless gaseous tritium source
 - Intensity (10¹¹ decays/s)
 - Stability (10⁻³ h⁻¹)
 - Isotopic purity (> 95%)
- Tritium retention (factor > 10¹⁴)
- Adiabatic transport of electrons

Spectrometer & detector section

- Spectrometer UHV (p < 10⁻¹¹ mbar)
- Energy resolution (<1 eV at 18.6 keV)
- High voltage stability (sub-ppm/month)
- High detection efficiency (10⁻³...10³ cps)
- Low background rate (10⁻² cps)

 \rightarrow Poster F. Harms

Windowless gaseous tritium source

- Closed loop processing ~10¹⁶ Bq tritium / day
- 10⁻³ relative stability of T₂ column density:
 → injection & pumping rate, isotopic purity, temperature stability & homogeneity

WGTS assembly, delivery to KIT mid-2015

Transport and pumping sections

Differential pumping section (DPS)

- Turbomolecular pumps
- Tritium retention ~10⁵
- Magnetic guiding of β 's (5.6 T)

DPS being installed right now

Cryogenic pumping section (CPS)

• Cryo-sorption on 3-4 K argon frost

- Tritium retention >107
- Magnetic guiding of β's (5.6 T)

Spectrometer and detector section

KATRIN: commissioning measurements

Spectrometer & detector commissioning: phase I, summer 2013

Next steps for KATRIN

Spectrometer & detector commissioning: phase II starting 10/2014

KATRIN: v-mass sensitivity

$\sigma_{syst}(m_v^2) \le 0.017 \text{ eV}^2 - \text{total systematic uncertainty budget}$

- Source-related (final states, energy loss, column density, plasma potential, ...)
- Other (HV fluctuations, transmission function, non-Poissonian backgrounds, ...)

KATRIN: v-mass sensitivity ... and more:

Explore physics potential

close to the spectral endpoint E₀:

standard operation mode for KATRIN

• and further away from E₀:

search for keV-mass scale sterile $\boldsymbol{\nu}$ as DM candidates

Steinbrink et al. (2013), Mertens et al. (arXiv:1409.0920)

non-standard operation, requires novel concepts

Search for eV-scale sterile neutrinos

Project 8 – phase I

Project 8 – phase I results

First observation of cyclotron radiation from single electrons

Electron capture experiments

¹⁶³Ho-based experiments: basics

Atomic de-excitation of ¹⁶³Dy*:

- X-rays
- Electrons (Auger, Coster-Kronig)
- \rightarrow Cryogenic calorimetric measurement

$$\Delta \Phi_{\rm s} \propto \frac{\partial M}{\partial T} \cdot \frac{E}{C_{\rm sensor} + C_{\rm absorber}}$$

$$\Delta T \qquad T < 100 \, {\rm mK}$$

Example:

Metallic magn. calorimeter

absorber

Fleischmann et al. (2009)

¹⁶³Ho-based experiments: overview

ECHO

Heidelberg (Univ., MPI-K), U Mainz, U Tübingen, TU Dresden U Bratislava, INR Debrecen, ITEP Moscow, PNPI St Petersburg, IIT Roorkee, Saha Inst. Kolkata

- Started R&D in 2011
- MMC technology
- Prototype: currently most precise calorimetric ¹⁶³Ho spectrum

U Milano-Bicocca, INFN Milano/Genova/Roma, U Lisboa, U Miami, NIST, JPL

- Established in 2013 (previous R&D in MARE)
- TES technology
- Multi-channel readout

- Los Alamos, NIST, U Madison and others
- Since ~2011
- TES technology
- Source production & detector development

Different technological approaches, but common challenges:

- Detector characteristics: energy resolution, pile-up
- Source preparation: isotopic quantity & purity, implantation process
- Scalability for eV (and sub-eV) sensitivity: large arrays

¹⁶³Ho-based experiments: challenges

Detector

- Statistics: $N_{ev} = N_{det} \cdot A_{\beta} \cdot t_{M}$ $\rightarrow N_{ev} > 10^{14}$ requires $N_{det} \cdot A_{\beta} \sim 10^{6}$ Bq for $t_{M} \sim$ few years
- Pile-up fraction: $f_{pu} \sim A_{\beta} \cdot \tau_{r} << 10^{-4}$ \rightarrow Fast & large number of detectors
- "Moderate" resolution: ΔE ~ 1–10 eV

Source implanted into absorber

- Production: $10^6 \text{ Bq} \rightarrow \text{N}(^{163}\text{Ho}) = 2 \cdot 10^{17}$
- Implantation: Preserving detector features
- Background: Radiochemical purity

ECHO – Metallic Magnetic Calorimeters

ECHo prototype

- Rise time ~130 ns
- Energy res.
- Non-linearity

 ΔE_{fwhm} = 7.6 eV at 6 keV

ECHO – Metallic Magnetic Calorimeters

Precision parameterization of the EC spectrum

- Penning trap mass spectrometry to pin down Q_{EC}: uncertainty 30-100 eV SHIPTRAP, TRIGA-TRAP – ongoing 1 eV PENTATRAP – next few years
- Improved description of environmental effects

Source/absorber development

Test various ¹⁶³Ho **production**, **purification** & **implantation** options

 Thermal neutron activation of ¹⁶²Er:
 high prod. rate
 contamination

Charged-particle activation (e.g. ^{nat}Dy):
 :(low rate, :) little contamination

Array development

- Pile-up: 10-100 Bq/pixel tolerable
- Still need arrays of O(10⁴-10⁵) pix.
- Read-out: microwave multiplexing
- ECHo: prepare test with 64 pixels
 Aim: < 10 eV sensitivity on m(v)

Summary

Status and outlook

	tritium β-decay	¹⁶³ Ho electron capture
status	 KATRIN is in construction and commissioning phase Project 8 prototype, proof of principle with ^{83m}Kr 	 3 experiments in various stages, parallel R&D on detector technology high-purity ¹⁶³Ho production scalable arrays
outlook	 Reach sensitivity of 200 meV with KATRIN Develop cyclotron spectroscopy towards a first tritium measurement 	 Operate small arrays to collect ~10¹⁰ counts for a sensitivity of 10 eV Prepare large-scale experiment for sub-eV range

(Breaking) Moore's law for direct v-mass measurements

Adapted from J.F. Wilkerson/R.G.H. Robertson, L. Gastaldo