Suche nach Dunkler Materie mit Kryo-Bolometern

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Raimund Strauss MPP München

Astroteilchenphysik in Deutschland, Karlsruhe, 01.10.2014

Current Status of Direct Dark Matter Searches

Current Status of Direct Dark Matter Searches

Potential of Cryogenic Detectors

Why are cryogenic detectors particularly sensitive to *low-mass WIMPs* ?

• Low energy threshold

Potential of Cryogenic Detectors

Why are cryogenic detectors particularly sensitive to *low-mass WIMPs* ?

- Low energy threshold
- Light elements

Irreducible thermal fluctuations:

$$\left< \Delta E^2 \right> = k_B T^2 C$$

Need:

Low temperature

Low heat capacity

Irreducible thermal fluctuations:

$$\left< \Delta E^2 \right> = k_B T^2 C$$

Need:

> Low temperature

Low heat capacity

Operation at mK:

Temperature increase from particles interactions can be measured! ($1 \text{keV} \rightarrow \mu \text{K}$)

Thermometer response:

"Calorimetric mode"

"Calorimetric mode"

"phonons flow into the thermometer more quickly than out of it !"

"Calorimetric mode"

"Bolometric mode"

"Bolometric mode"

"Bolometric mode"

	CRESST	EDELWEISS	SuperCDMS
Threshol Baseline	d: E_{th} ≈ 0.4 keV noise: σ ≈ 0.075 keV	E_{th} ≈ 3 keV σ ≈ 0.5 keV	E _{th} ≈ 1.5 keV σ ≈ 0.4 keV
tra	ansition-edge-sensor	NTD sensor	transition-egde-sensor
	CaWO ₄	Ge	Ge
	m= 300g	m= 800g	m= 600g

First Generation Experiments

First Generation Experiments

Surface Backgrounds

CRESST	EDELWEISS	SuperCDMS
Scintillating housing	Veto electrodes	
scintillator		

CRESST	EDELWEISS	SuperCDMS
Scintillating housing	Veto electrodes	
scintillator	additional light	foil

CRESST	EDELWEISS	SuperCDMS
Scintillating housing	Veto electrodes	
scintillator	veto strong electric field veto	

CRESST	EDELWEISS	SuperCDMS
Scintillating housing	Veto electrodes	
scintillator	veto e ⁻ bulk event h ⁺ veto	

CRESST	EDELWEISS	SuperCDMS
Scintillating housing	Veto electrodes	
scintillator	veto e h+ veto	
Rejection of surface-alpha backgrounds	Rejection of surface layer	
	Raimund Strauss. MPI Munich	

CRESST	EDELWEISS	SuperCDMS
Scintillating housing	Veto electrodes	
scintillator	veto fiducial volume veto	
Rejection of surface-alpha backgrounds	Rejection of surface layer	
	Raimund Strauss, MPI Munich	

CRESST	EDELWEISS	SuperCDMS
Scintillating housing	Veto electrodes	Timing (Charge-Phonon)
scintillator	veto fiducial volume veto	fiducial volume TES charge electrode
Rejection of surface-alpha backgrounds	Rejection of surface layer	Rejection of surface layer
	Raimund Strauss, MPI Munich	

Direct Dark Matter Experiments

CURRENT STATUS

Ge-FID800 (Fully Inter-digitized Detectors)

- m=800g
- High fiducial volume (75%)
- highly-improved charge read-out
- 2 NTD sensors for phonon measurement

Excellent rejection of gamma events

Improvement by a factor of 5

Raimund Strauss, MPI Munich

Ge-FID800 (Fully Inter-digitized Detectors)

- m=800g
- High fiducial volume (75%)
- highly-improved charge read-out
- 2 NTD sensors for phonon measurement

Ge-FID800 (Fully Inter-digitized Detectors)

- m=800g
- High fiducial volume (75%)
- highly-improved charge read-out
- 2 NTD sensors for phonon measurement

Highly-improved setup:

- Cryogenics
- Electronics
- Background suppression

background [20,200] keV	EDELWEIS-III [evts/kg/day]	improvement
Gamma	14 - 44	÷ 2 to 6
Ambient n's	(0.8- 1.9)x10⁻⁴	÷ ~100
µ-induced n's	< 2x10⁴	÷ 10

Current status:

- 36 FID800 installed (24 are read-out)
- Data-taking since 2 months
- First data release planned for spring 2015

Current status:

- 36 FID800 installed (24 are read-out)
- Data-taking since 2 months
- First data release planned for spring 2015

Projected sensitivity:

 Standard WIMPs (12.000kg-days) after 500 days, background-free above 15keV

WIMP-Nucleon Cross Section (SI) [cm²]

10-43

10-44

10-4

Current status:

- 36 FID800 installed (24 are read-out)
- Data-taking since 2 months
- First data release planned for spring 2015

Projected sensitivity:

- Standard WIMPs (12.000kg-days) after 500 days, background-free above 15keV
- Low-mass WIMPs (4 detectors) highly improved resolution

R&D for EDELWEISS

R&D for EDELWEISS

Goal: time-resolved ionisation signals

SuperCDMS

First data release in spring 2014

- 15 detectors in operation at Soudan
- 577kg-days of exposure
- Improved rejection of gamma and surface events
- Probed new parameter below 6 GeV/c²

iZIP detectors (600g Ge)

- $i \rightarrow$ interleaved electrodes
- $Z \rightarrow Z$ -sensitive
- $I \rightarrow$ ionisation (4 channels each)
- $P \rightarrow$ phonon (8 channels each)

SuperCDMS – Voltage Assisted Detectors

High voltage applied on electrodes

- ightarrow Drifting of electrons and holes
- → Amplification of phonon signal (Neganov-Luke effect)

Use phonons to read charge!

- + Excellent threshold: 170 eV_{ee} (for electron recoils)
- Loss of background discrimination (only 1 channel experiment)

SuperCDMS – Voltage Assisted Detectors

Ionization quenching for nuclear recoils by a factor of k=0.1-0.2

- Energy scale must be scaled
 (→uncertainty)
- + Dilution of background

SuperCDMS – Voltage Assisted Detectors

Data-taking since July 2013

• 18 modules mounted (~ 5kg)

Release of first data on low-mass WIMPs in July 2014

- 29 kg-days of exposure with a single detector module (TUM40)
- Novel detector design employed

Novel fully-scintillating detector design

→ Highly-efficient rejection of surface-alpha backgrounds!

CaWO₄ crystal growth at TU Munich

A. Erb and J.-C. Lanfranchi, *CrystEngComm*, 2013, 15, 2301-2304
M. von Sivers, Opt. Mat. 34, 11 (2012) 1843-1848, arXiv:1206.1588

Goals :

- Increase radiopurity
- Increase light output
- Ensure supply (for ton scale)
 Major achievements:
- Reproducible growth of CRESST-size crystals
- Unprecedented intrinsic radiopurity

Total event rate of TUM40

Unprecedented background rate: ~3.5 counts / [kg keV day]

Gamma-lines from **cosmogenic** activation

Excellent resolution: $\sigma \approx 90 \text{ eV}$ (@2.6keV)

Total event rate of TUM40

Phonon and Light channels fully-exploitable down to lowest energies! → Dilution of background

Results from 29kg-days of CRESST-II Phase 2

Projection for Final Exposure of CRESST-II Phase 2

Raimund Strauss, MPI Munich

Projection for Final Exposure of CRESST-II Phase 2

CRESST-III: Low-Mass WIMP Search

Straight-forward approach for near future: **CRESST-III Phase 1**

Status quo (TUM40)

m = 250g V = 32x32x40 mm³

Phonon threshold: $E_{th} \approx 0.4 \text{ keV}$

Light-detector res.: $\sigma \approx 5 \text{ eV}$

CRESST-III: Low-Mass WIMP Search

Straight-forward approach for near future: CRESST-III Phase 1

NO improvements assumed concerning radiopurity and optical quality of crystals!

CRESST-III Phase 1 - Prototype

Reduce intrinsic background level of crystals!

- Growth of CaWO₄ crystals in-house (TUM)
- All production steps under control
- Improvement by factor 10 already achieved
- Cleaning procedure e.g. by re-crystallization

REALISTIC GOAL (in 2 years):

Reduction of background level to 10^{-2} counts /[kg keV day] (2 orders of magnitude compared to present CaWO₄ crystals)

100 x 24g detectors of improved quality operated for 2 year \approx 1000 kg-days (net)

Future European Cryogenic Dark Matter Experiment - EURECA

Project based on CRESST & EDELWEISS technologies

- Conceptual design report 2014
 G. Angloher et al., Physics of the Dark Universe 3 (2014) 41–74
- modular towers in cryostat
- Water shield around cryostat
- Phase 1:
 - six 800g Ge or twelve 300g
 CaWO₄ per tower level
 - Option: 1.6kg Ge and 1kg CaWO₄ detectors
- Phase 2: up to 1ton of target mass

EURECA & SuperCDMS

Based on earlier collaborative work between EDELWEISS and CDMS-II

Common analysis of Ge detectors Phys. Rev. D 84, 011102(R) (2011)

Status SuperCDMS:

Supported experiment after G2-downselection

- Funding for large cryostat (up to 400kg of target mass)
- Funding of 50kg Ge detectors

Expected EURECA contribution:

- Detectors (Ge + CaWO₄)
- Cryogenics
- towers & readout
- optimisation of shielding

Close contact between EDELWEISS, CRESST and SuperCDMS collaborations!

Summary

Standard (high-mass) WIMPs

- background-free technology (above ~15keV)
- Ton scale feasible

Summary

High potential for low-mass WIMP search

SuperCDMS (+EDELWEISS)

- Application of Neganov-Luke voltage
- Low threshold
- Dilution of backgrounds

CRESST

- Lowest thresholds
- Phonon-light technique
- Multi-element target