Liquid noble gases for direct dark matter searches

Teresa Marrodán Undagoitia

marrodan@mpi-hd.mpg.de

Astroteilchenphysik in Deutschland - Status und Perspektiven, Karlsruhe, October 2014

Direct dark matter detection

Indications of dark matter from Astronomy and Cosmology:

BUT what is its nature?

→ Particle candidate: WIMP (Weakly Interacting Massive Particle)

- Possible detection mechanisms:
 - Production at LHC $(p + p \rightarrow \chi + other particles)$
 - Indirectly via annihilation $(\chi \chi \rightarrow e^+ e^-, p\overline{p}, \gamma \gamma ...)$
 - Scattering off nuclei $(\chi \text{ N} \rightarrow \chi \text{ N})$

Direct detection experiments

Teresa Marrodán Undagoitia (MPIK)

Liquid noble gases

Advantages of liquid noble gases for DM searches

- Large masses and homegeneous targets (LNe, LAr & LXe)
 Two detector concepts: single & double phase
- 3D position reconstruction \rightarrow fiducialization
- Transparent to their own scintillation light

	LNe	LAr	LXe
Z (A)	10 (20)	18 (40)	54 (131)
Density [g/cm ³]	1.2	1.4	3.0
Scintillation λ	78 nm	125 nm	178 nm
BP [K] at 1 atm	27	87	165
loniz. [e ⁻ /keV]*	46	42	64
Scint. [γ /keV]*	7	40	46

* for electronic recoils

Backgrounds

- External γ 's from natural radioactivity:
 - Suppression via self-shielding of the target
 - Material screening and selection
 - Rejection of multiple scatters & discrimination
- Internal contamination:
 - ⁸⁵Kr: removal by cryogenic distillation/chromatography/centrifuges
 - ²¹⁹Rn, ²²⁰Rn, ²²²Rn: removal using adsorption/distillation
 - Argon: ³⁹Ar (565 keV endpoint, 1 Bq/kg), ⁴²Ar
 - Xenon: ¹³⁶Xe $\beta\beta$ decay (T_{1/2} = 2.2 × 10²¹ y) long lifetime!
- External neutrons: muon-induced, (α, n) and from fission reactions
 - Go underground!
 - Shield: passive (polyethylene) or active (water/scintillator vetoes)
 - material selection for low U and Th contaminations

Light sensors

- Requirements for a dark matter experiment:
 - Low radioactivity & low dark rate (background rate only few Hz!)
 - UV sensitivity & stable performance at cold temperatures
 - Low power consumption & high QE/CE
- APD, SiPMT, hybrid tubes ...
- State of the art 3" photomultipliers from Hamamatsu:
 - R11065 (for LAr) used by DarkSide
 - R11410 (for LXe) for XENON1T, PandaX and LZ

XENON1T testing setup for R11410-21 at MPIK

- Low-radioactive photosensors ²³⁸U & ²²⁸Th < 1 mBq/PMT For reference: 1 Banana ~ 15 Bq in ⁴⁰K
- High quantum efficiency: 36% in average for XENON1T
- Stable performance at -100°C

Single phase (liquid) detectors

- High light yield using 4π photosensor coverage
- Position resolution in the cm range
- Pulse shape discrimination (PSD) from scintillation

Scintillation decay constants of argon measured by ArDM

- Very different singlet and triplet lifetimes in argon & neon
- Relative amplitudes depend on particle type → discrimination

DEAP-I obtained 10^{-8} discrimination in LAr above 25 keV_{ee} (50% acceptance)

M. G. Boulay et al., arXiv:0904.2930

→ PSD less powerful in LXe: similar decay constants XMASS, NIM. A659 (2011) 161

Teresa Marrodán Undagoitia (MPIK)

Liquid noble gases

Single phase: current detectors

DEAP - Dark matter Experiment with Argon and Pulse shape discrimination

- 3600 kg LAr
- Data expected in 2014

CLEAN - Cryogenic Low Energy Astrophysics with Noble gases

- 150 kg FV with LAr/LNe
- Commissioning this year

DEAP & CLEAN at

SNOlab, Canada

XMASS - 800 kg FV LXe (at Kamioka, Japan)

- Ultra-low background required + Self-shielding
- High light yield of 14.7 PE/keVee, E_{th} = 0.3 keV_{ee}
- Detector refurbished, resumed data-taking in Nov. 2013, expecting results soon
- Currently designing XMASS-1.5

Two phase noble gas TPC

- Drift field necessary
- Electronegative purity required
- 3D position resolution in mm

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
- → Electron- /nuclear recoil discrimination

Double phase LAr & LXe experiments

LAr double-phase TPCs

DarkSide-50:

- Detector inside Borexino counting facility, LNGS (Italy)
- Data of first run shown this spring
- 50 kg depleted argon from underground sources > 100 reduction in ³⁹Ar level
- PSD & charge/light ratio for discrimination Goal to reach 10⁻⁴⁵ cm² in 3 y measuring time

ArDM:

- Mass: 850 kg liquid argon (in target)
- Technology demonstrator
- Installed at Canfranc (Spain)
- Underground operation II expected for 2014

XENON experiment

- Laboratori Nazionali del Gran Sasso (Italy)
- ho \sim 3 650 m.w.e. shielding

- XENON10: 15 kg active mass
- XENON100: 62 kg active mass
 - Currently running
- XENON1T: ~ 2.2 T active mass
 - o construction started 2013!

The XENON Collaboration

Columbia Rice

UCLA

Zürich

Coimbra LNGS

INFN

Purdue

Bern

Teresa Marrodán Undagoitia (MPIK)

Liquid noble gases

Karlsruhe, 10/2014

XENON100 at LNGS

 Instrument paper: Astropart. Phys. 35 (2012) 573

 Analysis paper: Astropart. Phys. 54 (2014) 11

- 30 cm drift length and 30 cm \varnothing
- 161 kg total (30-50 kg fiducial volume)
- Material screening and selection
- Active liquid xenon veto
- Background ~ 5 · 10⁻³ events/(kg·d·keV)
- Bottom PMTs: high quantum efficiency

Bottom PMT array

Top PMT array

Teresa Marrodán Undagoitia (MPIK)

Liquid noble gases

Results from 225 live days data

- Background exp. in the benchmark region: (1.0±0.2) events
- Exclusion limit derived using profile likelihood method XENON100, Phys. Rev. Lett. 109 (2012) 181301
- → Science run III: 154 d run still blinded + currently taking data

Liquid noble gases

Spin-dependent and axion search results

- Study of electronic recoil events
- Energy scale derived from Compton measurements in Zurich and Columbia
- Limit derived for axion-like particles and solar axions

XENON100, Phys. Rev. D 90 (2014) 062009, arXiv:1404.1455

- Spin-dependent best sensitivity for neutron coupling
- Isotopes with a non zero nuclear spin (¹²⁹Xe & ¹³¹Xe)
- State of the art calculations of form factors used (Menendez *et al.*)

XENON100, Phys. Rev. Lett. 111, 021301 (2013)

XENON1T

• Goal: two orders of magnitude improvement in sensitivity

- Approx. 1t fiducial volume out of a total of 3t LXe
- Background requirement: <1 event in the full exposure

XENON1T illustration

- External γ's: suppression via self-shielding (ρ_{LXe} ~ 3 g/cm³)
 + material screening and selection
- Internal BGs (⁸⁵Kr and Rn): removal by dedicated device and control by material screening and surface treatment
- Neutrons: muon veto + material selection for low U and Th contaminations

XENON1T at LNGS

- 1 ton fiducial volume out of \sim 3 ton LXe
- $\bullet~$ Goal to reach 2 $\times~10^{-47}\,cm^2$
- Construction started in 2013 at LNGS Water tank, cryostat & cryosystem installed Gas and storage systems commissioning
- Commissioning in 2015

XENON1T cryostat

XENON1T at LNGS

- 1 ton fiducial volume out of ~3 ton LXe
- Goal to reach $2 \times 10^{-47} \text{ cm}^2$
- Construction started in 2013 at LNGS Water tank, cryostat & cryosystem installed Gas and storage systems commissioning
- Commissioning in 2015

Detector design

- Background requirement: <1 event in ~ 2 years</p>
- 1 m electron-drift and 100 kV HV demonstrated

XENON1T TPC design

Responsibilities of German groups in XENON1T

Mainz:

→ Muon veto: water-Cherenkov detector (arXiv:1406.2374)

→ Work on storage system & TPC (Monte Carlo, level meters) See poster: Search for dark matter with XENON – activities at Mainz

Münster:

- → Kr distillation: reduction of the radioactive of ⁸⁵Kr
- → Xenon purification: removal of electronegative impurities See poster: Cryogenic Distillation Column for XENON1T
- MPIK:
- Photosensors: tests at room and liquid xenon temperatures
- \rightarrow Screening: γ screening with Ge detectors and Rn emanation
- → Gas purity analytics: Rn removal and Kr in Xe measurement

Upgrade of XENON1T to XENONnT

- XENONnT would contain about 6 tons LXe
- All infrastructure (muon veto, cryostat, recuperation system ...) built already to accommodate XENONnT
- Only' LXe, 250 PMTs and new TPC necessary
- One additional order of magnitude improvement in sensitivity ٠

LUX at Homestake

LUX - Large Underground Xenon detector

- 118 kg fiducial mass (370 kg total)
- Results from first run in 2013

→ LZ: multi-ton detector planned

PandaX at Jinping Lab

PandaX, arXiv:1405.2882

Design concept in stages:

- Stage 1a: 120 kg target (ongoing)
- Stage 1b: 500 kg target (late 2014)
- Stage 2: 1.5 ton target
- Everything designed for 1 ton FV

First results of PandaX-I released (arXiv:1408.5114) PandaX-II currently being constructed

DARWIN: the ultimate WIMP detector

http: //darwin.physik.uzh.ch/

20t LXe and/or 50t LAr

- R&D and design study for a noble liquid facility in Europe
- LAr and LXe communities involved
- 28 groups from 10 countries
- Construction \sim 2020, data 2022 2026

DARWIN

- Goal: measure WIMP properties / ultimate cross-section sensitivity
- Neutrino physics channels become available:
 - Electronic recoils from solar neutrinos
 - Nuclear recoils from coherent neutrino scattering: solar, DSNB and atmospheric ν's

L. Baudis et al., JCAP01 (2014) 044

Sensitivity evolution in time

Figure from L. Baudis, talk at COSMO 2014

Summary

- Searches with noble liquids have progressed rapidly the last years
- → No discovery so far! But best sensitivity by liquid xenon detectors
- Big effort to increase the mass and reduce the backgrounds
- Running experiments in the order of 50 350 kg LAr/LXe
 - → Ton-scale experiments being constructed/commissioned
 - → XENON1T starting next year!

Noble gas scintillation process

ZEPLIN and the planned LZ experiment

- Until 2011 at Boulby mine
- 12 kg target mass (\sim 30 cm \varnothing)
- 3.5 cm drift depth
 - \rightarrow high E-field 3.9 kV per cm

ZEPLIN-III, Phys. Lett. B 709: 14 (2012)

- LZ: LUX ZEPLIN collaboration
- Current design: 5.6 ton LXe (FV)
- 482 PMTs (3 inch R11410)

Calibration using nuclear recoils

- Determination of signal region and energy scale
- → Dedicated neutron scattering experiments at keV energies!
- Nuclear recoil energy (*E*_{nr}):

 $E_{nr} = rac{S1}{L_y L_{eff}} imes rac{S_e}{S_r}$

S1: measured signal in p.e.

 L_y : LY for 122 keV γ in p.e./keV

Se/Sr: drift field quenching

 Relative scintillation efficiency of NR to 122 keV γ at 0-field

 $L_{eff} = q_{nucl} imes q_{el} imes q_{esc}$

- *q_{nucl}*: Linhard quenching
- *q_{el}*: Electronic quenching
- *q_{esc}*: Escape e⁻'s at 0-field

Measuring the nuclear recoil scale

Liquid argon Undhard Definition Definit

C. Regenfus et al., J. Phys. Conf. Ser. 375 (2012) 012019

Teresa Marrodán Undagoitia (MPIK)

Liquid xenon <mark>ہ</mark> 0.30 Aprile 2009 Manzur 2010 0.25 Plante 2011 Horn 2011 Aprile 2011 0.20 XENON100 (this work) 0.15 0.10 0.05 10² 2 10 Energy [keV_]

XENON100, Phys. Rev. D88 (2013) 012006

- Last years: few measurements in LAr
- → Field quenching up to 30%
- Various direct + indirect measurements in LXe
- → No indication for strong field dependence
- DD generators used at experiments

Low energy calibration: electronic recoils

W. H. Lippincott *et al.*, Phys. Rev. C81, 045803, (2010) 0911.5453

- Detector characterisation
 - Light/charge yield & resolution
 - Field quenching
- Dark matter searches producing electronic recoils (e.g. axions)
- → Internal calibration sources such as ^{83m}Kr, CH₃T, ³⁹Ar favoured

Teresa Marrodán Undagoitia (MPIK)

20 50 100 200

Energy [keV]

Baudis et al., Phys. Rev. D 87, 115015 (2013)