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Multi-messenger astronomy in 2012.

> Three messengers are available to study the non-thermal universe…
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Multi-messenger astronomy in 2012.

> Three messengers are available to study the non-thermal universe…
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> … two of them have been observed.

✔
✔
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Multi-messenger astronomy in 2014.

> Three messengers are available…..
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Photons
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Charged particles: 
p, N, e±

> ….and used to study the non-thermal universe.

✔
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Multi-messenger astronomy in 2014.

> Three messengers are available…..
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> Triggered follow-up observations.

Multi-messenger astronomy concepts: Transient phenomena.
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Optical  
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Search for coincident neutrino/gamma-ray flares.

> Trigger TeV gamma-ray observations from IceCube neutrino data.!
> More than 100 candidate sources in programs with VERITAS, MAGIC, HESS.!
> Near real-time analysis: Search for unusual clustering of neutrino events.!
> Minutes to days timescale.!
> No detections of gamma-ray flares after IceCube triggers so far.
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ALERT

MAGIC threshold: 0.2 alerts/src/yr
Veritas threshold: 0.05 alerts/src/yr

No coordinates here! - Blindness policy

D. Gora for the IceCube collaboration, ICRC 2013



Markus Ackermann  |  30.09.2014  |  Page  

Search for high-energy neutrinos from core-collapse SNe.

> Online search for spatio-temporal clustering of neutrinos to trigger optical / x-ray 
follow-up observations:!
▪ Δt < 100 s  and  ΔΨ < 4 deg!

> Search for SNe in the directions of the detected neutrino directions.

7
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Search for high-energy neutrinos from core-collapse SNe

> Connection between supernovae 
and gamma-ray bursts.!
!

> Few % of core-collapse SNe might 
develop mildly relativistic jets.!
!

> Favorable for neutrino production, 
no visible prompt gamma signal.!
!

> Neutrino signal could be observed 
out to tens of Mpc distance. 
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Expected neutrinos from SN at 10 Mpc 
in IceCube

Abbasi et al., A&A, 2010

?
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Search for high-energy neutrinos from core-collapse SNe

> March 30, 2012.!
!

> 2 neutrinos observed within 1.79 s 
and within 1.3 deg.!
!

> Alert sent to ROTSE, PTF and Swift!
!

> PTF observes type IIn supernova 
coincident with neutrino position at 
300 Mpc distance.!
!

> Chance coincidence probability: ~4%.!
!

> SN already several months old. 
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M.Voge for the IceCube collaboration, ICRC 2013
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GRBs and their connection to CR production.

> Gamma-ray bursts (GRB) are prime candidates for the production of ultra-high-
energy CRs.!
▪ Similar energy needed in CRs as observed in gamma-rays to produce observed 1020 eV CRs.!
▪ CRs are produced via Fermi acceleration in internal shocks with high Lorentz factors.!

!
> Neutrinos can be used to probe CR acceleration in GRBs. 
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GRB observations.

> Dedicated instruments like the Fermi 
Gamma-ray Burst Monitor (GBM) 
scan for GRBs!

> Community is alerted via GCN 
notices!

> Information can be used for follow-
up observations / cross-correlation 
with other messengers.
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Swift

Fermi GBM
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GRBs and their connection to CR production.
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Ahlers et al. 2011
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GRBs and their connection to CR production.
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predicted  CR spectrum

predicted ν spectrum

M. Richman for the IceCube collaboration, ICRC 2013
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> No excess of neutrinos found 
in coincidence with GRBs in 
IceCube/Antares data !
!

> GRBs as dominant cosmic-ray 
production sites disfavored for 
wide variety of (internal shock) 
models.
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Ahlers et al. 2011
Abbasi et al., Nature 2012

allowed parameter space

allowed  
parameter  

space

standard  
parameters

GRBs and their connection to CR production.
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Multi-messenger astronomy concepts: Dataset correlation.

> Cross-correlation of available data.!
> Combined interpretation of photon / neutrino / cosmic-ray observations 
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Astrophysical neutrino flux

Cosmic-ray composition 
& spectrum 

Extragalactic gamma-ray background 
+ individual sources.
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High-energy cosmic-ray spectrum and composition.

> Spectrum and composition from air-
shower sampling with ground 
based detectors.
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> Only mean elemental composition 
measurement possible.!
!

> Large uncertainties due to hadron 
shower physics.
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The extragalactic gamma-ray background.

> Total intensity of gamma-ray emission attributed to extragalactic sources.!
> Measured over nine orders of magnitude in energy.!
> Above 100 GeV cutoff from absorption in the extragalactic background light.
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M. Ackermann for the Fermi LAT collaboration - TeVPA 2014



Markus Ackermann  |  30.09.2014  |  Page  

The astrophysical neutrino flux.

> Origin unknown.!
!

> Distribution compatible with 
isotropic.!
▪ But a fractional contribution from 

Galactic sources is possible.!
!

> Preliminary best fit spectrum: 
simple power-law with index 2.5 +/- 
0.08
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Global fit

Preliminary
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The cosmic-ray / gamma / neutrino connection

> High-energy cosmic rays 
interact with the EBL 
during propagation.!
!

> Neutrino/Gamma 
production via pγ-
interactions!
!

> Reprocessing of gamma 
rays to GeV energies

18
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Multi-messenger constraints on UHECR properties.

> CR, neutrino and gamma-ray spectrum from propagation code.!
> Cosmological evolution of sources corresponds to FR-II galaxy evolution.!
> Proton sources.

19
Sigl and v.Vliet, arXiv:1407.6577
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Multi-messenger constraints on UHECR properties.

20Sigl and v.Vliet, arXiv:1407.6577

> CR, neutrino and gamma-ray spectrum from propagation code.!
> Cosmological evolution of sources corresponds to GRB evolution.!
> Proton sources.
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The origin of the astrophysical neutrino flux.

> Candidate populations to produce high-energy neutrinos:
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The origin of the astrophysical neutrino flux.

> Candidate populations to produce high-energy neutrinos:
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… not more than small 
fraction of diffuse flux 
(see Wolfgang’s talk)

… disfavored for standard 
scenarios.

… only a fraction of diffuse 
neutrinos can be Galactic.
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The origin of the astrophysical neutrino flux.

> If neutrinos originate 
from pp-interactions 
→ strong constraints 
on the low-energy 
spectrum.!
!

> Applies to e.g. star-
forming galaxies, 
galaxy cluster 
emission.!
!

> Both lower and upper 
limit on contribution to 
the EGB.!
!

> Weak dependence on 
source evolution.

22

Murase et al., PRD, 2014
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> Search for possible counter parts 
in TeV gamma-ray source catalog.!

> IceCube shower events have 
10º — 15º angular resolution.!

> Compare power emitted in 
gamma-rays to power in neutrinos.!

> Several Blazars and PWN found 
as potential TeV counterparts to 
neutrino sources.

23

The origin of the astrophysical neutrino flux.

Padovani and Resconi, MNRAS, 2014
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Or is it something different all together ?

> no reason to speculate, yet… !
But:!

> Indirect dark matter search is another very interesting multi-messenger topic!
> I will leave this to the talk about DM searches tomorrow

24



Markus Ackermann  |  30.09.2014  |  Page  

Summary

> Each messenger of the non-thermal universe has its limitations:!
!
!
!
!
!
!
!
!
!

> Combining them allows us to understand the non-thermal universe much better 
than we could with each single one of them.!

> We are just at the beginning of multi-messenger astronomy, not at its end.!
> The near future might bring us a 4th messenger: Gravitational waves.
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γ
ν
CR

‣Many different emission processes. 
‣ Large fractions of universe opaque above the GeV regime.

‣ Low statistics. 
‣ Even lower statistics with good pointing resolution.

‣ No pointing resolution in most energy ranges. 
‣ Information washed out by propagation.
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Direct measurements of CR composition.

> Detailed elemental 
spectra and 
composition of 
cosmic rays, 
including anti-
particles.
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The origin of the astrophysical neutrino flux.

> Model: Diffuse neutrino 
flux originates from CR 
accelerated in AGN!
!

> CR produce neutrinos & 
gammas in interactions 
with the EBL.!
!

> Strong bounds from 
observed CR flux. !
!

> Peak in the neutrino 
spectrum at ~ 1 PeV 
predicted.
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Kalashev et al., PRL, 2013


