Neutrinoeigenschaften

Werner Rodejohann AT-Physik in D30/09/14

.

Astroteilchenphysik in Deutschland

Status und Perspektiven

 30.9.9. - 1.10.2014 am KIT
 Cardsruher Institut für Technologic

 Programmenner
 Jahren Burner

 Redard Burner
 Jahren Burner

 Redard Burner
 Jahren Burner

 Barner Burner
 Jahren Burner
 </

Neutrinoeigenschaften in Kürze

- massiv
- mischen
- wahrscheinlich Majorana

Standardmodel

addiere $m_{
u}$ zu

Spezies	#	\sum
Quarks	10	10
Leptonen	3	13
Ladung	3	16
Higgs	2	18
starke CP	1	19

Standardmodel

addiere m_{ν}

Spezies	#	\sum		Spezies	#	\sum
Quarks	10	10		Quarks	10	10
Leptonen	3	13		Leptonen	12 (10)	22 (20)
Ladung	3	16	7	Ladung	3	25~(23)
Higgs	2	18		Higgs	2	27~(25)
starke CP	1	19		starke CP	1	28~(26)

${\bf Standardmodel^{*}}$

addiere m_{ν}

Spezies	#	\sum		Spezies	#	\sum
Quarks	10	10		Quarks	10	10
Leptonen	3	13		Leptonen	$12 \ (10)$	22 (20)
Ladung	3	16	~ 7	Ladung	3	25~(23)
Higgs	2	18		Higgs	2	27~(25)
starke CP	1	19	:	starke CP	1	28(26)

- plus neue Energieskala
- plus neue SM Darstellung
- plus neue Konzepte
- plus...

Neutrinoparameter bei niedriger Energie

$$\mathcal{L} = \frac{1}{2} \nu^{T} m_{\nu} \nu \text{ mit } m_{\nu} = U \operatorname{diag}(m_{1}, m_{2}, m_{3}) U^{T}$$

und PMNS Matrix
$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} P$$

mit $P = \operatorname{diag}(e^{i\alpha}, e^{i\beta}, 1)$ (\leftrightarrow Majorana, Leptonzahlverletzung)
 $\Rightarrow 3$ Winkel, 3 Phasen, 3 Massen

3 Aufgaben

- Parameter bestimmen
- Parameter erklären
- Überprüfen ob minimale Beschreibung ("3 Majorana-Neutrino Paradigma") korrekt ist

Status 2014

9 physikalische Parameter in m_{ν}

- $heta_{12}$ und $m_2^2 m_1^2$
- θ_{23} und $|m_3^2 m_2^2|$
- θ_{13}
- m_1 , m_2 , m_3
- $sgn(m_3^2 m_2^2)$
- Dirac-Phase δ
- Majorana-Phasen α und β

Massenskala und -ordnung

Skala und normal/invertiert fundamentaler Input für Modellbauer!

Allgemein: $m_{
u} \propto 1/\Lambda_{
m NP}$

Skala und normal/invertiert fundamentaler Input für Modellbauer!

Neutrinomasse

$m(\text{schwerste})\gtrsim \sqrt{|m_3^2-m_1^2|}\simeq 0.05~\text{eV}$

3 **komplementäre** Methoden zur Messung:

Methode	Observable	geg. [eV]	nah/fern [eV]	pro	con
Kurie	$\sqrt{\sum U_{ei} ^2 m_i^2}$	2.3	0.2/0.1	model-unabh.; theo. sauber	final?; schwächstes
Kosmo.	$\sum m_i$	0.7	0.3/0.05	bestes; NH/IH	Systematik; model-abh.
0 uetaeta	$ \sum U_{ei}^2 m_i $	0.3	0.1/0.05	fundamental; NH/IH	model-abh.; theo. schmutzig

Alle 3 unverzichtbar!

Komplementarität!

warum m_{ν} winzig? \Rightarrow Seesaw-Mechanismus

Ursprung kleiner Neutrinomassen: Seesaw-Mechanismus Einfachstes Konzept^a führt <u>drei neue Aspekte</u> ein:

- fermionische Singlets $N_R \sim (1,0)$
- neue Energieskala $M_R~(\propto 1/m_{
 m
 u})$
- Leptonzahlverletzung

$$m_{
u} = m_D^2/M_R = m_{
m SM}\,\epsilon\,\,{
m mit}\,\,\epsilon = m_{
m SM}/M_R$$

^aVorhersage von SO(10) Modellen!

Tests des Seesaw? naiv, $M_R = m_D^2/m_\nu = v^2/\sqrt{\Delta m_A^2} \sim 10^{15}$ GeV... Seesaw-Portal: $\bar{L} \Phi N_R \longrightarrow m_D$:

Vertex aus Lepton-Doublet L, Higgs Φ , Singlet N_R !

- $N_R \to L \Phi$: Leptogenese
- $L_{\alpha} \rightarrow N_R \Phi \rightarrow L_{\beta}$: Leptonflavorverletzung
- $\Phi \rightarrow N_R L \rightarrow \Phi$: Vakuumstabilität

(plus neutrinoloser doppelter Betazerfall)

Pfade zu Neutrinomassen

	Inhalt	Quantenzahl Messenger	L	$m_{ u}$	Skala
"SM" (Dirac-Masse)	RH v	$N_R \sim (1,0)$	$h\overline{N_R}\Phi L$	hv	$h = \mathcal{O}(10^{-12})$
"effektiv"	neue Skala	_	$h \ \overline{L^c} \Phi \Phi L$	$\frac{h v^2}{\Lambda}$	$\Lambda = 10^{14}~{ m GeV}$
(dim 5 Operator)	+ LZV			Λ	
"direkt"	Higgs-Triplet	$\Delta \sim (3,2)$	$h\overline{L^c}\Delta L + \mu\Phi\Phi\Delta$	$hv \tau$	$\Lambda = \frac{1}{M_{\Lambda}^2} M_{\Lambda}^2$
(type II seesaw)	+ LZV	_ (-,-)			$h\mu^{}\Delta$
"indirekt 1"	RH $ u$	$N_{\rm D} \sim (1,0)$	$h\overline{N}_{D}\Phi L + \overline{N}_{D}M_{D}N^{c}$	$(hv)^2$	$\Lambda = \frac{1}{2}M_{\rm D}$
(type I seesaw)	+ LZV	$R^{+2}(1,0)$		^{M}R	$h = h^{m}R$
"indirekt 2"	Fermion-Triplets	$\Sigma \sim (3, 0)$	$b\overline{\Sigma} L \Phi \pm \mathrm{Tr}\overline{\Sigma} M = \Sigma$	$(hv)^2$	$\Lambda = \frac{1}{2}M_{\rm T}$
(type III seesaw)	+ LZV	$\angle \sim (3,0)$	$m \Sigma L \Phi \pm m \Sigma \Sigma$	M_{Σ}	$\Lambda = \overline{h} M \Sigma$

plus Seesaw-Varianten (linear, double, inverse,...)

plus radiative Mechanismen

plus zusätzliche Raumdimensionen

plusplusplus

 $= f\left(heta_{12}, |U_{e3}|, m_i, \operatorname{sgn}(\Delta m_A^2), lpha, eta
ight)$

7 von 9 Parametern!

...Lebensdauer vs. kleinste Masse

Laufende, bald startende Experimente

HDM-Limit von 2001 erst 2012/13 verbessert...

Name	lsotop	Quelle = D	Quelle \neq Detektor		
		ΔE hoch	ΔE niedr.	Topologie	Topologie
AMoRE	¹⁰⁰ Mo	\checkmark	-	-	-
CANDLES	⁴⁸ Ca	-	\checkmark	-	-
COBRA	116 Cd (und 130 Te)	-	_	\checkmark	-
CUORE	130 Te	\checkmark	-	-	-
DCBA/MTD	82 Se / 150 Nd	-	-	-	\checkmark
EXO	136 Xe	-	-	\checkmark	-
GERDA	⁷⁶ Ge	\checkmark	-	-	-
IHE	82 Se / 100 Mo / 116 Cd / 130 Te	\checkmark	-	-	-
KamLAND-Zen	136 Xe	-	\checkmark	-	-
LUCIFER	82 Se / 100 Mo / 130 Te	\checkmark	-	-	-
EUMINEU	¹⁰⁰ Mo	\checkmark	-	-	-
MAJORANA	76 Ge	\checkmark	-	-	-
MOON	82 Se / 100 Mo / 150 Nd	-	-	-	\checkmark
NEXT	136 Xe	-	-	\checkmark	-
= sno+	130 Te	-	\checkmark	-	-
SuperNEMO	82 Se / 150 Nd	-	-	-	\checkmark
XMASS	136 Xe	_	\checkmark		_

NME	⁷⁶ Ge		¹³⁶ Xe		
	GERDA	comb	KLZ	comb	10 ²⁶
EDF(U)	0.32	0.27	0.13	_	Ξ
ISM(U)	0.52	0.44	0.24	-	Ge combined
IBM-2	0.27	0.23	0.16	-	claim (2004)
pnQRPA(U)	0.28	0.24	0.17	_	10 ²⁵ 68% C.L.
SRQRPA-B	0.25	0.21	0.15	_	w result)
SRQRPA-A	0.31	0.26	0.23	_	-200 (ne -4.48 - 4.48 -
QRPA-A	0.28	0.24	0.25	_	10^{24} 10^{25} 0^{25} 10^{25}
SkM-HFB-QRPA	0.29	0.24	0.28	_	GERDA, Schwingenheuer

Bhupal Dev, Goswami, Mitra,

W.R., Phys. Rev. **D88**

Invertierte Ordnung

wichtige Skala:

$$|m_{ee}|_{\min}^{\text{IH}} \simeq c_{13}^2 \sqrt{\Delta m_{\text{A}}^2} \, \cos 2\theta_{12}$$

kennen wir $|m_{ee}|_{min}^{IH}$ gut genug?

Invertierte Ordnung ausschließen

$$|m_{ee}|_{\min}^{\text{IH}} = (1 - |U_{e3}|^2) \sqrt{|\Delta m_{\text{A}}^2|} (1 - 2\sin^2 \theta_{12})$$
$$= (0.01 \dots 0.02) \text{ eV}$$

 $\Rightarrow 3\sigma\text{-Bereich von } \sin^2 \theta_{12} \text{ gibt Faktor} \sim 2 \text{ Unsicherheit für } |m_{ee}|_{\min}^{\text{IH}}$ $(T_{1/2}^{0\nu})^{-1} \propto |m_{ee}|^2 \propto \sqrt{\frac{M t}{B \Delta E}}$ $\Rightarrow \text{Faktor} \sim 16 \text{ für } M \times t \times B \times \Delta E$ $\Rightarrow \text{Präzisionsmessung von } \theta_{12} \text{ nötig (e.g. JUNO)}$ Dueck, W.R., Zuber, PRD 83

Invertierte Ordnung ausschließen

Vorhersagen von Grand Unified Theories							
Modell	Fit	$ m_{ee} $ [meV]	m_0 [meV]	M_3 [GeV]	χ^2		
$10_H + \overline{126}_H$ $10_H + \overline{126}_H + SS$	NH NH	$0.49 \\ 0.44$	$2.40 \\ 6.83$	3.6×10^{12} 1.1×10^{12}	23.0 3.29		
$10_H + \overline{126}_H + 120_H$ $10_H + \overline{126}_H + 120_H + SS$	NH NH	2.87 0.78	$1.54 \\ 3.17$	9.9×10^{14} 4.2×10^{13}	11.2 6.9×10^{-6}		
$10_H + \overline{126}_H + 120_H$ $10_H + \overline{126}_H + 120_H + SS$	IH IH	35.52 24.22	30.2 12.0	1.1×10^{13} 1.2×10^{13}	13.3 0.6		

Dueck, W.R., JHEP 1309

Falls sterile Neutrinos...

$|m_{ee}| = 0$ für IH und $|m_{ee}| \neq 0$ für NH!

Interpretation des Doppelbetazerfalls

• Standardinterpretation:

Neutrinoloser doppelter Betazerfall wird von leichten massiven Majorana-Neutrinos erzeugt

• Nicht-Standardinterpretationen:

Neutrinoloser doppelter Betazerfall wird <u>nicht</u> von leichten massiven Majorana-Neutrinos erzeugt

W.R., Int. J. Mod. Phys. **E20**, 1833-1930 (2011)

 $0\nu\beta\beta$ -Experimente sind keine reinen Neutrinoexperimente!

• Standardinterpretation:

• Nicht-Standardinterpretationen:

Nützlicher Zufall: $T_{1/2}^{0\nu}(1 \text{ eV}) = T_{1/2}^{0\nu}(1 \text{ TeV})$

- RPV Supersymmetrie
- links-rechts symmetrische Modelle
- schwere Neutrinos
- Color-octets
- Leptoquarks
- effektive Operatoren
- Extra Dimensionen
- . . .

 \Rightarrow Lösung des inversen Problems...

Auch hier Zusammenhang zu (modifizierter) KATRIN?

Barry, Heeck, W.R., 1404.5955

Interpretation I: LRSM

Möglich mit modifizierter links-rechts Symmetrie, $g_R = 0.6 g_L$ (Skalarfelder der $SU(2)_L$ haben verschiedene Masse als Skalarfelder der $SU(2)_R$)

Zusammenfassung

Phänomenologie schwerer Singlets: Higgs Higgs-Potenzial ist flach \Rightarrow Korrekturen gefährlich $\dot{\lambda} \propto -24 \operatorname{Tr} \left(Y_u^{\dagger} Y_u \right)^2 \propto m_t^4 \quad \Rightarrow \mathsf{Vakuumstabilität}$ (Holthausen, Lim, Lindner; Bezrukov et al.; Degrassi et al.; Masina) E energy This costs too much energy! I think I'll hang out down there. "vacuum expectation value" false true Ø (Vakuum vermutlich metastabil)

Phänomenologie schwerer Singlets: Higgs Dirac-Beitrag $\bar{L} \Phi N_R$ zu λ : $\dot{\lambda} \propto -8 m_D^4$

Casas et al.; Strumia et al.; W.R., Zhang

Zerstört Vakuumstabilität

(auch für TeV-Neutrinos die an Beschleunigern produzierbar sind)

Sterile Neutrinos

immer noch viele Hinweise auf (sub-)eV sterile Neutrinos (LSND, MiniBooNE, Gallium, Reaktor, etc.)

Falls diese sterile Neutrinos existieren...

- ...ändern sich die Massenobservablen und ihre Korrelationen
- ...müssen wir Flavorsymmetriemodelle überdenken
- ...müssen wir Seesaw-Modelle überdenken
- ...könnte Standard-Kosmologie falsch sein
- ...etc.

teilweise ebenso für keV sterile Neutrinos (↔ WDM)

Warum sollten wir Leptonzahlerhaltung testen?

- *L* und *B* zufällig im SM erhalten
- effektive Theorie: $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_{LZV} + \frac{1}{\Lambda^2} \mathcal{L}_{LFV, BZV} + \dots$
- Baryogenese: *B* verletzt
- B, L oft in GUTs zusammenhängend
- GUTs haben Seesaw und Majorana-Neutrinos
- (chirale Anomalien: $\partial_{\mu}J^{\mu}_{B,L} = c G_{\mu\nu} \tilde{G}^{\mu\nu} \neq 0$ mit $J^{B}_{\mu} = \sum \overline{q_i} \gamma_{\mu} q_i$ und $J^{L}_{\mu} = \sum \overline{\ell_i} \gamma_{\mu} \ell_i$)

 $\Rightarrow Leptonzahlverletzung genau so wichtig wie Baryonzahlverletzung$ $(0<math>\nu\beta\beta$ ist viel mehr als ein Neutrinoexperiment)

Vorhersagen von Grand Unified Theories Yukawa-Struktur von SO(10) Modellen hängt von Higgs-Darstellungen ab $10_H (\leftrightarrow H), \overline{126}_H (\leftrightarrow F), 120_H (\leftrightarrow G)$ Gibt Relationen zwischen Massenmatrizen: $m_{\rm up} \propto r(H + sF + it_u G)$ $m_{\rm down} \propto H + F + iG$ $m_D \propto r(H - 3sF + it_D G)$ $m_\ell \propto H - 3F + it_l G$ $M_R \propto r_B^{-1} F$ \leftrightarrow Fit mit RG, Higgs, θ_{13} Dueck, W.R., JHEP 1309

PMNS-Matrix:

 $|U| = \begin{pmatrix} 0.801 \dots 0.845 & 0.514 \dots 0.580 & 0.137 \dots 0.158 \\ 0.225 \dots 0.517 & 0.441 \dots 0.699 & 0.614 \dots 0.793 \\ 0.246 \dots 0.529 & 0.464 \dots 0.713 & 0.590 \dots 0.776 \end{pmatrix}$

CKM-Matrix:

 $|V| = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.00065 & 0.00351^{+0.00015}_{-0.00014} \\ 0.22520 \pm 0.00065 & 0.97344^{+0.00016}_{-0.00016} & 0.0412^{+0.0011}_{-0.0005} \\ 0.00867^{+0.00029}_{-0.00031} & 0.0404^{+0.0011}_{-0.0005} & 0.999146^{+0.00021}_{-0.00046} \end{pmatrix}$

Warum so verschieden?? \leftrightarrow Flavoursymmetrien!

Komplementarität!

- sind in Ära der Komplementarität:
 - Kosmologie-Limits schließen aus dass leichte Neutrinos 0 $\nu\beta\beta$ -Limits erfüllen
 - $0\nu\beta\beta$ -Limits schließen aus dass leichte Neutrinos Mainz/Troitsk-Limit erfüllen
- interesante Möglichkeiten falls Inkonsistenzen auftauchen...

Komplementarität und Nicht-Standardphysik

- Kosmologie $\neq \Lambda CDM$
 - Pan-STARRS1 Survey (1310.3828): $\omega_{\text{DE}} = -1.142^{+0.076}_{-0.065}$: Σ -Limit schwächer
 - BICEP-2 vs. Planck: $N_{\text{eff}} = 4$ bevorzugt, m_s wird kleiner (1403.7028, 1403.8049, 1404.1794)
 - σ_8 von Planck vs. lokales σ_8 : $\Sigma = 0.5 \pm 0.2$ eV (1403.4852)
- keine Neutrinos in $0\nu\beta\beta$
- KATRIN: RH Ströme, extra Dimensionen, tachyonische Neutrinos,...

Von Lebensdauer zu Teilchenphysik: Kernmatrixelemente

Xe-Limit ist besser als Ge-Limit wenn:

$$T_{\rm Xe} > T_{\rm Ge} \left. \frac{G_{\rm Ge}}{G_{\rm Xe}} \left| \frac{\mathcal{M}_{\rm Ge}}{\mathcal{M}_{\rm Xe}} \right|^2
m{yrs}$$

The Zoo (of A_4 models)

Type	L_i	ℓ^c_i	$ u_i^c$	Δ	References	
A1				-	$[1-14]$ $[15]^{\#}$	
A2	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	-	$\underline{1}, \underline{1}', \underline{1}'', \underline{3}$	[16-18]	
A3				$\underline{1}, \underline{3}$	[19]	
B1	3	$\underline{1}, \underline{1}', \underline{1}''$	<u>3</u>	-	[4, 20-27] [#] $[28-30]$ * $[31-45]$	
B2	9			$\underline{1}, \underline{3}$	$[46]^{\#}$	
C1	3	<u>3</u>	-	-	[2, 47, 48]	
C2				<u>1</u>	$[49, 50] [51]^{\#}$	
C3	<u>5</u>			$\underline{1}, \underline{3}$	[52]	
C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[53]	
D1	<u>3</u>	<u>3</u>	<u>3</u>	-	$[54, 55]^{\#}$ $[56, 57]^{*}$ $[58]$	
D2				<u>1</u>	$[59] [60]^*$	
D3				$\underline{1}'$	$[61]^*$	
D4				$\underline{1}', \underline{3}$	$[62]^*$	
Е	<u>3</u>	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	-	[63, 64]	
F	$\underline{1},\underline{1}',\underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1} \text{ or } \underline{1}'$	[65]	
G	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}',\underline{1}''$	-	[66]	
Н	<u>3</u>	<u>1, 1, 1</u>	-	-	[67]	
Ι	<u>3</u>	$\underline{1}, \underline{1}, \underline{1}$	$\underline{1}, \underline{1}, \underline{1}$	-	[68]*	
J	3	<u>1</u> , <u>1</u> , <u>1</u>	3	-	[12, 39, 69, 70]	
Κ	<u>3</u>	$\underline{1}, \underline{1}, \underline{1}$	1, 1	1	[71]*	
L	<u>3</u>	<u>1</u> , <u>1</u> , <u>1</u>	1	-	[72]*	
М	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}'',\underline{1}'$	<u>3, 1</u>	-	[73, 74]	
Ν	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}'',\underline{1}'$	$\underline{3}, \underline{1}', \underline{1}''$	-	[75]	

Barry, W.R., PRD 81, 093002 (2010)

all give the same mixing scheme...

Neutrino mass sum-rules

constrains masses and Majorana phases

Barry, W.R., NPB 842

Seesaw-Formalismus

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

$$6 \times 6 \text{ Matrix, diagonalisiert mit}$$

$$\mathcal{U}_{\nu} \simeq \begin{pmatrix} 1 - \frac{1}{2}BB^{\dagger} & B \\ -B^{\dagger} & 1 - \frac{1}{2}B^{\dagger}B \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V_R \end{pmatrix} \text{ mit } B = m_D M_R^{-1}$$

leichte Neutrinos (mischen nicht-unitär):

$$m_{\nu} = -m_D M_R^{-1} m_D^T = U \operatorname{diag}(m_1, m_2, m_3) U^T$$

schwere Neutrinos:
$$M_R = V_R \operatorname{diag}(M_1, M_2, M_3) V_R^T$$

(N_R sind sterile Neutrinos)

Status globaler Fits (Maltoni et al., post Nu2014)

3-flavour global fit to oscillation data

Ergebnisse der Fits							
		Fogli et al.	Maltoni et al.	Valle et al.			
$\sin^2 \theta_{aa}$	nor	0.437	0.452	0.567			
5111 023	inv	0.455	0.579	0.573			
\$ /0	nor	250	306	266			
0/	inv	236	254	266			

- Oktant von θ_{23} : T2K misst signifikante $P_{\mu e} \propto \sin^2 \theta_{13} \sin^2 \theta_{23} + \text{Materie}, \delta$, aber stark von Details atm. nus abhängig (sub-GeV *e*-Exzess)
- $\delta \simeq \frac{3}{2}\pi$: Korrelation von θ_{13} aus LBL und KL; 1σ -Bereich ist $\sin \delta \in [-1, 0]$
- CP Verletzung ist bei $\lesssim 1.5\sigma$, korreliert mit θ_{23}
- Keine signifikante Präferenz bei Normal vs. Invertiert

Imprint of keV neutrinos on ß-spectrum

Imprint of keV neutrinos on ß-spectrum

Mertens *et al.*, 1409.0920

Imprint of keV neutrinos on ß-spectrum

Mertens *et al.*, 1409.0920

 \Rightarrow mixing down to 10^{-7} in reach!? hard for KATRIN to see something...

 \Rightarrow mixing down to 10^{-7} in reach!?

hard for KATRIN to see something...

...can increase signal with additional interactions, e.g. right-handed currents

- left-handed contribution
- right-handed contribution
- interference contribution (Bonn *et al.*)

Neutrino masses up to m = 18.6 keV testable

(Mertens *et al.*; deVega *et al.*)

$$u_{L}$$

$$u_{L}$$

$$u_{L}$$

$$u_{R}$$

$$u_{R}$$

$$W_{\bar{L}}$$

$$u_{\bar{L}}$$

$$u_$$

$$\begin{split} \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}E}\right)_{LL} &= K'(E+m_e)p_e X[1+2C\tan\xi] \\ \times \left[|U_{ei}|^2 \sqrt{X^2 - m_i^2} \,\Theta(X-m_i) + |S_{ei}|^2 \sqrt{X^2 - M_i^2} \,\Theta(X-M_i)\right] \\ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}E}\right)_{RR} &\simeq K'(E+m_e)p_e X \left[\frac{m_{W_L}^4}{m_{W_R}^4} + \tan^2\xi + 2C\frac{m_{W_L}^2}{m_{W_R}^2}\tan\xi\right] \\ &\times |V_{ei}|^2 \sqrt{X^2 - M_i^2} \,\Theta(X-M_i) \\ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}E}\right)_{LR} &= -2K'm_e p_e \operatorname{Re}\left\{\left[\left(\frac{m_{W_L}}{m_{W_R}}\right)^2 + C\tan\xi\right] \right] \\ \times \left[U_{ei}T_{ei}m_i \sqrt{X^2 - m_i^2} \,\Theta(X-m_i) + S_{ei}V_{ei}M_i \sqrt{X^2 - M_i^2} \,\Theta(X-M_i)\right]\right\} \\ &\text{with } X = E_0 - E \end{split}$$

neglect interference term *b*:

$$\theta_{\text{eff}}^2 \simeq |S_{ej}|^2 + 1.1 \times 10^{-6} |V_{ej}|^2 \left(\frac{2.5 \,\text{TeV}}{m_{W_R}}\right)^4$$

and note that M does 0
uetaeta with amplitude $\propto |V_{ej}|^2\,(m_W/m_{W_R})^4\,M/q^2$

 \Rightarrow connection to $0\nu\beta\beta$ constraints!

connection to $0\nu\beta\beta$ constraints:

$$\theta_{\text{eff}}^2 = |S_{ej}|^2 + \frac{m_e}{M_j} \left[|\mathcal{M}_{\nu}^{0\nu}|^{-2} \left(G_{01}^{0\nu} \right)^{-1} \left(T_{1/2}^{0\nu} \right)^{-1} - |S_{ej}^2 M_j / m_e|^2 \right]^{\frac{1}{2}}$$

How the additional interactions save the day

- double beta decay without RHC: $\theta^2 M = 7 \times 10^{-10} \,\mathrm{keV} = 70 \,\mu\mathrm{eV}$
- double beta decay with RHC: $(m_{W_L}/m_{W_R})^4 |V_{ei}|^2 M = 8 \,\mathrm{meV}$

• decay:
$$\frac{\Gamma_{\rm RHC}(N_j \to \bar{\nu}\gamma)}{\Gamma_{\rm SM}(N_j \to \nu\gamma)} \simeq \frac{m_{W_L}^4 |S_{ei}|^2}{m_{W_R}^4 |T_{ei}|^2} \simeq \frac{m_{W_L}^4}{m_{W_R}^4}$$

• beta decay: $\theta_{\text{eff}}^2 \simeq |S_{ej}|^2 + 1.1 \times 10^{-6} |V_{ej}|^2 \left(\frac{2.5 \text{ TeV}}{m_{W_R}}\right)^4 > |S_{ej}|^2$
Implizieren Dirac-Neutrinos Leptonzahlerhaltung?

Model basierend auf B - L, gebrochen um 4 Einheiten

 \Rightarrow Neutrinos sind Dirac, $\Delta L = 2$ verboten, aber $\Delta L = 4$ erlaubt...

Heeck, W.R., EPL 103

- Model basierend auf B L, gebrochen um 4 Einheiten
- \Rightarrow Neutrinos sind Dirac, $\Delta L = 2$ verboten, aber $\Delta L = 4$ erlaubt...
- \Rightarrow Observable: <u>neutrinoloser vierfacher Betazerfall</u> $(A, Z) \rightarrow (A, Z + 4) + 4e^{-}$

	$Q_{0\nu4\beta}$	Zerfälle	NA
$^{96}_{40}\mathrm{Zr} ightarrow ^{96}_{44}\mathrm{Ru}$	0.629	$\tau_{1/2}^{2\nu 2\beta} \simeq 2 \times 10^{19}$	2.8
$^{136}_{54}\rm{Xe} \to {}^{136}_{58}\rm{Ce}$	0.044	$ au_{1/2}^{2' u 2 eta} \simeq 2 imes 10^{21}$	8.9
$^{150}_{60}\mathrm{Nd} ightarrow ^{150}_{64}\mathrm{Gd}$	2.079	$ au_{1/2}^{2'\nu 2\beta} \simeq 7 \times 10^{18}$	5.6

Heeck, W.R., EPL 103