First direct measurement of solar pp-neutrinos in Borexino

Astroteilchenphysik in Deutschland Karlsruhe, 1 Oct 2014

Michael Wurm JGU Mainz/PRISMA

Outline

- Solar fusion and pp neutrinos
- Expected signal in BOREXINO
- Main challenges:
 Radiopurity
 ¹⁴C background
- Results obtained
 by BOREXINO
 [Nature 512 (2014) 7515]
- Relevance for neutrino oscillations and solar physics

Michael Wurm (JGU Mainz/PRISMA)

Solar fusion processes

Real-time measurements of solar neutrinos

First measurement of pp-neutrinos in Borexino

Standard Solar Model (SSM) by Bahcall, Pinsonneault

Radiochemical experiments: integrated measurement only

8

UMass

Amherst

Kurchatov

Moscow

St. Petersburg

Princeton

Los Angeles

Borexino @ LNGS

Borexino is located in Hall C of the LNGS (Laboratori Nazionali del Gran Sasso)

corresponding rock shielding: 1400 m (3500 mwe) residual cosmic muon flux: ~1.2/m²h or 4300/d in Bx ID

Michael Wurm (JGU Mainz/PRISMA)

Layout of the Borexino detector

Michael Wurm (JGU Mainz/PRISMA)

Outer Detector

First measurement of pp-neutrinos in Borexino

Event reconstruction in Borexino

0

- Scintillation light yield
 ~500 photoelectrons per MeV
- Instrumental threshold
 ~25 pe 50 keV
- Energy reconstruction number of detected photoelectrons $\rightarrow \Delta E/E \sim 5\% @ 1 MeV$
- Spatial reconstruction photon arrival time pattern (tof)
 → Δx ~ 10 cm @ 1 MeV

Detection by neutrino-electron scattering

Backgrounds in the region of interest

Borexino purification campaign

Michael Wurm (JGU Mainz/PRISMA)

First measurement of pp-neutrinos in Borexino

Effect of purifications

Carbon-14

- intrinsic to the scintillator:
 pseudocumene -- C₉H₁₂
- very low concentration n(¹⁴C)/n(¹²C) ~ 2.7x10⁻¹⁸
 → still ~10² Bq in 100 tons
- mostly below threshold
 → hard to fit spectral shape
 → actual decay rate?
- forms pile-up due to high rate
 → additional signals in pp-region?

 \rightarrow main obstacle to pp detection

True spectrum based on random ¹⁴C events

True spectrum based on random ¹⁴C events

40±1 Bq per 100 ton

Michael Wurm (JGU Mainz/PRISMA)

Pile-up spectrum from synthetic pile-up

 Synthetic method uses: Random real event samples delayed ¹⁴C events (no LE cut-off)

 Real PMT hit patterns of both events are overlayed

→ reconstructed by regular analysis code

→ pile-up energy spectrum

pp-rate from spectral fit

Electron-neutrino survival probability P_{ee}

Electron-neutrino survival probability P_{ee}

 \rightarrow confirmation of basic LMA-MSW oscillation scheme at low energy

 \rightarrow intermediate transition regime still to be explored

pp-neutrinos and solar luminosity

Including oscillation effects, Bx pp-v rate translates to $\Phi_{exp} = (6.6 \pm 0.7) \times 10^{10} / \text{cm}^2\text{s}$

Prediction from Standard Solar Model (SSM) $\Phi_{pp} = (5.98 \pm 0.04) \times 10^{10} / \text{cm}^2\text{s}$

pp fusion rate **tightly linked** to overall solar power in SSM

 → direct cross-check of solar photon luminosity
 L_☉ = 3.85 x 10²⁶ W

Stability of solar hydrogen burning

Time of flight of neutrinos from production to Earth: tof ≈ 8 min

Duration of energy transport from solar core to surface:

 $t_{diff} \approx several 10^4 \text{ yrs}$

pp-neutrinos monitor directly solar energy output

→ check of solar fusion long-term stability (on the level of ±11%)

Conclusions & Outlook

- Borexino performed first real-time measurement of solar pp-neutrino flux
- Result confirms vacuum oscillation probabilities
- Full agreement with Standard Solar Model

Conclusions & Outlook

- Borexino performed first real-time measurement of solar pp-neutrino flux
- Result confirms vacuum oscillation probabilities
- Full agreement with
 Standard Solar Model

Future aims:

- **10**¹³ $+ p \rightarrow {}^{2}H + e^{+} + \nu_{a}$ 10¹² p (±0.6% ⁷Be (±7%) 10¹⁰ Solar neutrino flux N (±14%) pep (±1.2%) 10^{8} 150 (±14%) 8B (±14%) 17F (±17%) 10⁴ 10^{3} 10^{2} 10^{-1} 10 Neutrino energy (MeV)
- Increase precision on ⁷Be, pep, ⁸B and geo-neutrinos
- Better limit/first detection of CNO neutrinos
- Sterile neutrino search in SOX → see next talk by Matteo Agostini

Thank you!