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Backgrounds	
  in	
  the	
  region	
  of	
  interest	
  

(equation (1)) rate to be 131 6 2 counts per day (c.p.d.) per 100 t of
target scintillator.

The scintillation light generated by a 100 keV event typically induces
signals in ,50 photomultiplier tubes (PMTs). This allows for a low de-
tection threshold (,50 keV), much less than the maximum electron recoil
energy of pp neutrinos (Emax 5 264 keV).

The pp neutrino analysis is performed through a fit of the energy dis-
tribution of events selected to maximize the signal-to-background ratio.
The selection criteria (Methods) remove residual cosmic muons, decays of
muon-produced isotopes, and electronic noise events. Furthermore, to
suppress background radiation from external detector components, only
events whose position is reconstructed inside the central detector volume
(the ‘fiducial volume’: 86 m3, 75.5 t) are used in the analysis. The fit is done
within a chosen energy interval and includes all relevant solar neutrino
components and those from various backgrounds, mostly from resid-
ual radioactivity traces dissolved in the scintillator.

Figure 2 shows a calculation of the spectral shape of the pp neutrino
signal (thick red line), as well as of the other solar neutrino components
(7Be, pep and CNO), and of the relevant backgrounds (14C, intrinsic to
the organic liquid scintillator; its ‘pile-up’ (see definition below); 210Bi;
210Po; 85Kr; and 214Pb), all approximately at the observed rates in the data.
The pp neutrino spectral component is clearly distinguished from those
of 85Kr, 210Bi, CNO and 7Be, all of which have flat spectral shapes in the
energy region of the fit. Most of the pp neutrino events are buried

under the vastly more abundant 14C, which is ab-emitter with a Q value
of 156 keV. In spite of its tiny isotopic fraction in the Borexino scintil-
lator (14C/12C < 2.7 3 10218), 14Cb-decay is responsible for most of the
detector triggering rate (,30 counts s21 at our chosen trigger thresh-
old). The 14C and pp neutrino energy spectra are, however, distinguish-
able in the energy interval of interest.

The 14C rate was determined independently from the main analysis,
by looking at a sample of data in which the event causing the trigger is
followed by a second event within the acquisition time window of 16ms.
This second event, which is predominantly due to 14C, does not suffer
from hardware trigger-threshold effects and can thus be used to study
the rate and the spectral shape of this contaminant. We measure a 14C
rate of 40 6 1 Bq per 100 t. The error accounts for systematic effects due
to detector response stability in time, uncertainty in the 14C spectral
shape27, and fit conditions (Methods).

An important consideration in this analysis were the pile-up events:
occurrences of two uncorrelated events so closely in time that they can-
not be separated and are measured as a single event. Figure 2 shows the
expected pile-up spectral shape, which is similar to that of the pp neutrinos.
Fortunately, the pile-up component can be determined independently,
using a data-driven method, which we call ‘synthetic pile-up’ (Methods).
This method provides the spectral shape and the rate of the pile-up com-
ponent, and is constructed as follows. Real triggered events without any
selection cuts are artificially overlapped with random data samples. The
combined synthetic events are selected and reconstructed using the same
procedure applied to the regular data. Thus, some systematic effects, such
as the position reconstruction of pile-up events, are automatically taken
into account. The synthetic pile-up is mainly due to the overlap of two 14C
events, but includes all possible event combinations, for example 14C with
the external background, PMT dark noise or 210Po. 14C–14C events dom-
inate the synthetic pile-up spectrum between approximately 160 and
265 keV. The fit to the 14C–14C pile-up analytical shape in this energy
region gives a total rate for 14C–14C pile-up events of 154 6 10 c.p.d. per
100 t in the whole spectrum, without threshold.

Measurement of the pp neutrino flux
The data used for this analysis were acquired from January 2012 to
May 2013 (408 days of data; Borexino Phase 2). This is the purest data
set available, and was obtained after an extensive purification campaign
that was performed in 2010 and 201128 and reduced, in particular, the
content of 85Kr and 210Bi isotopes, which are important backgrounds
in the low-energy region.

The pp neutrino rate has been extracted by fitting the measured
energy spectrum of the selected events in the 165–590 keV energy win-
dow with the expected spectra of the signal and background components.
The energy scale in units of kiloelectronvolts is determined from the
number of struck PMTs, using a combination of calibration data col-
lected with radioactive sources deployed inside the scintillator29 and a
detailed Monte Carlo model28.

The fit is done with a software tool developed for previous Borexino
measurements28 and improved for this analysis to include the descrip-
tion of the response of the scintillator to mono-energetic electrons, to
give high statistics; a modified description of the scintillation line-
width at low energy, providing the appropriate response functions
widths for a- and b-particles (mainly from the 210Po and 14C back-
grounds); and the introduction of the synthetic pile-up.

The main components of the fit are the solar neutrino signal (the
dominant pp component and the low-energy parts of the 7Be, pep and
CNO components); the dominant 14C background and the associated
pile-up; and other identified radioactive backgrounds (85Kr, 210Bi,
210Po and 214Pb). The free fit parameters are the rates of the pp solar
neutrinos and of the 85Kr, 210Bi and 210Po backgrounds. The 7Be neut-
rino rate is constrained at the measured value17 within the error, and
pep and CNO neutrino contributions are fixed at the levels of the SSM9,
taking into account the values of the neutrino oscillation parameters25.
The 14C and the synthetic pile-up rates are determined from the data
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Figure 2 | Energy spectra for all the solar neutrino and radioactive
background components. All components are obtained from analytical
expressions, validated by Monte Carlo simulations, with the exception of the
synthetic pile-up, which is constructed from data (see text for details).
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Figure 1 | Solar neutrino energy spectrum. The flux (vertical scale) is given in
cm22 s21 MeV21 for continuum sources and in cm22 s21 for mono-energetic
ones. The quoted uncertainties are from the SSM9.
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(equation (1)) rate to be 131 6 2 counts per day (c.p.d.) per 100 t of
target scintillator.

The scintillation light generated by a 100 keV event typically induces
signals in ,50 photomultiplier tubes (PMTs). This allows for a low de-
tection threshold (,50 keV), much less than the maximum electron recoil
energy of pp neutrinos (Emax 5 264 keV).

The pp neutrino analysis is performed through a fit of the energy dis-
tribution of events selected to maximize the signal-to-background ratio.
The selection criteria (Methods) remove residual cosmic muons, decays of
muon-produced isotopes, and electronic noise events. Furthermore, to
suppress background radiation from external detector components, only
events whose position is reconstructed inside the central detector volume
(the ‘fiducial volume’: 86 m3, 75.5 t) are used in the analysis. The fit is done
within a chosen energy interval and includes all relevant solar neutrino
components and those from various backgrounds, mostly from resid-
ual radioactivity traces dissolved in the scintillator.

Figure 2 shows a calculation of the spectral shape of the pp neutrino
signal (thick red line), as well as of the other solar neutrino components
(7Be, pep and CNO), and of the relevant backgrounds (14C, intrinsic to
the organic liquid scintillator; its ‘pile-up’ (see definition below); 210Bi;
210Po; 85Kr; and 214Pb), all approximately at the observed rates in the data.
The pp neutrino spectral component is clearly distinguished from those
of 85Kr, 210Bi, CNO and 7Be, all of which have flat spectral shapes in the
energy region of the fit. Most of the pp neutrino events are buried

under the vastly more abundant 14C, which is ab-emitter with a Q value
of 156 keV. In spite of its tiny isotopic fraction in the Borexino scintil-
lator (14C/12C < 2.7 3 10218), 14Cb-decay is responsible for most of the
detector triggering rate (,30 counts s21 at our chosen trigger thresh-
old). The 14C and pp neutrino energy spectra are, however, distinguish-
able in the energy interval of interest.

The 14C rate was determined independently from the main analysis,
by looking at a sample of data in which the event causing the trigger is
followed by a second event within the acquisition time window of 16ms.
This second event, which is predominantly due to 14C, does not suffer
from hardware trigger-threshold effects and can thus be used to study
the rate and the spectral shape of this contaminant. We measure a 14C
rate of 40 6 1 Bq per 100 t. The error accounts for systematic effects due
to detector response stability in time, uncertainty in the 14C spectral
shape27, and fit conditions (Methods).

An important consideration in this analysis were the pile-up events:
occurrences of two uncorrelated events so closely in time that they can-
not be separated and are measured as a single event. Figure 2 shows the
expected pile-up spectral shape, which is similar to that of the pp neutrinos.
Fortunately, the pile-up component can be determined independently,
using a data-driven method, which we call ‘synthetic pile-up’ (Methods).
This method provides the spectral shape and the rate of the pile-up com-
ponent, and is constructed as follows. Real triggered events without any
selection cuts are artificially overlapped with random data samples. The
combined synthetic events are selected and reconstructed using the same
procedure applied to the regular data. Thus, some systematic effects, such
as the position reconstruction of pile-up events, are automatically taken
into account. The synthetic pile-up is mainly due to the overlap of two 14C
events, but includes all possible event combinations, for example 14C with
the external background, PMT dark noise or 210Po. 14C–14C events dom-
inate the synthetic pile-up spectrum between approximately 160 and
265 keV. The fit to the 14C–14C pile-up analytical shape in this energy
region gives a total rate for 14C–14C pile-up events of 154 6 10 c.p.d. per
100 t in the whole spectrum, without threshold.

Measurement of the pp neutrino flux
The data used for this analysis were acquired from January 2012 to
May 2013 (408 days of data; Borexino Phase 2). This is the purest data
set available, and was obtained after an extensive purification campaign
that was performed in 2010 and 201128 and reduced, in particular, the
content of 85Kr and 210Bi isotopes, which are important backgrounds
in the low-energy region.

The pp neutrino rate has been extracted by fitting the measured
energy spectrum of the selected events in the 165–590 keV energy win-
dow with the expected spectra of the signal and background components.
The energy scale in units of kiloelectronvolts is determined from the
number of struck PMTs, using a combination of calibration data col-
lected with radioactive sources deployed inside the scintillator29 and a
detailed Monte Carlo model28.

The fit is done with a software tool developed for previous Borexino
measurements28 and improved for this analysis to include the descrip-
tion of the response of the scintillator to mono-energetic electrons, to
give high statistics; a modified description of the scintillation line-
width at low energy, providing the appropriate response functions
widths for a- and b-particles (mainly from the 210Po and 14C back-
grounds); and the introduction of the synthetic pile-up.

The main components of the fit are the solar neutrino signal (the
dominant pp component and the low-energy parts of the 7Be, pep and
CNO components); the dominant 14C background and the associated
pile-up; and other identified radioactive backgrounds (85Kr, 210Bi,
210Po and 214Pb). The free fit parameters are the rates of the pp solar
neutrinos and of the 85Kr, 210Bi and 210Po backgrounds. The 7Be neut-
rino rate is constrained at the measured value17 within the error, and
pep and CNO neutrino contributions are fixed at the levels of the SSM9,
taking into account the values of the neutrino oscillation parameters25.
The 14C and the synthetic pile-up rates are determined from the data

Energy (keV)

100 200 300 400 500 600 700

Ev
en

ts
 (c

.p
.d

. p
er

 1
00

 t 
pe

r k
eV

)

10–5

10–4

10–3

10–2

10–1

1

10

102

103

104

85Kr

7Be Q 

210Po

14C
pp Q

210Bi

pep Q

CNO Q
Synthetic
pile-up 

214Pb

Figure 2 | Energy spectra for all the solar neutrino and radioactive
background components. All components are obtained from analytical
expressions, validated by Monte Carlo simulations, with the exception of the
synthetic pile-up, which is constructed from data (see text for details).
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Figure 1 | Solar neutrino energy spectrum. The flux (vertical scale) is given in
cm22 s21 MeV21 for continuum sources and in cm22 s21 for mono-energetic
ones. The quoted uncertainties are from the SSM9.
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Carbon-­‐14	
  

(equation (1)) rate to be 131 6 2 counts per day (c.p.d.) per 100 t of
target scintillator.

The scintillation light generated by a 100 keV event typically induces
signals in ,50 photomultiplier tubes (PMTs). This allows for a low de-
tection threshold (,50 keV), much less than the maximum electron recoil
energy of pp neutrinos (Emax 5 264 keV).

The pp neutrino analysis is performed through a fit of the energy dis-
tribution of events selected to maximize the signal-to-background ratio.
The selection criteria (Methods) remove residual cosmic muons, decays of
muon-produced isotopes, and electronic noise events. Furthermore, to
suppress background radiation from external detector components, only
events whose position is reconstructed inside the central detector volume
(the ‘fiducial volume’: 86 m3, 75.5 t) are used in the analysis. The fit is done
within a chosen energy interval and includes all relevant solar neutrino
components and those from various backgrounds, mostly from resid-
ual radioactivity traces dissolved in the scintillator.

Figure 2 shows a calculation of the spectral shape of the pp neutrino
signal (thick red line), as well as of the other solar neutrino components
(7Be, pep and CNO), and of the relevant backgrounds (14C, intrinsic to
the organic liquid scintillator; its ‘pile-up’ (see definition below); 210Bi;
210Po; 85Kr; and 214Pb), all approximately at the observed rates in the data.
The pp neutrino spectral component is clearly distinguished from those
of 85Kr, 210Bi, CNO and 7Be, all of which have flat spectral shapes in the
energy region of the fit. Most of the pp neutrino events are buried

under the vastly more abundant 14C, which is ab-emitter with a Q value
of 156 keV. In spite of its tiny isotopic fraction in the Borexino scintil-
lator (14C/12C < 2.7 3 10218), 14Cb-decay is responsible for most of the
detector triggering rate (,30 counts s21 at our chosen trigger thresh-
old). The 14C and pp neutrino energy spectra are, however, distinguish-
able in the energy interval of interest.

The 14C rate was determined independently from the main analysis,
by looking at a sample of data in which the event causing the trigger is
followed by a second event within the acquisition time window of 16ms.
This second event, which is predominantly due to 14C, does not suffer
from hardware trigger-threshold effects and can thus be used to study
the rate and the spectral shape of this contaminant. We measure a 14C
rate of 40 6 1 Bq per 100 t. The error accounts for systematic effects due
to detector response stability in time, uncertainty in the 14C spectral
shape27, and fit conditions (Methods).

An important consideration in this analysis were the pile-up events:
occurrences of two uncorrelated events so closely in time that they can-
not be separated and are measured as a single event. Figure 2 shows the
expected pile-up spectral shape, which is similar to that of the pp neutrinos.
Fortunately, the pile-up component can be determined independently,
using a data-driven method, which we call ‘synthetic pile-up’ (Methods).
This method provides the spectral shape and the rate of the pile-up com-
ponent, and is constructed as follows. Real triggered events without any
selection cuts are artificially overlapped with random data samples. The
combined synthetic events are selected and reconstructed using the same
procedure applied to the regular data. Thus, some systematic effects, such
as the position reconstruction of pile-up events, are automatically taken
into account. The synthetic pile-up is mainly due to the overlap of two 14C
events, but includes all possible event combinations, for example 14C with
the external background, PMT dark noise or 210Po. 14C–14C events dom-
inate the synthetic pile-up spectrum between approximately 160 and
265 keV. The fit to the 14C–14C pile-up analytical shape in this energy
region gives a total rate for 14C–14C pile-up events of 154 6 10 c.p.d. per
100 t in the whole spectrum, without threshold.

Measurement of the pp neutrino flux
The data used for this analysis were acquired from January 2012 to
May 2013 (408 days of data; Borexino Phase 2). This is the purest data
set available, and was obtained after an extensive purification campaign
that was performed in 2010 and 201128 and reduced, in particular, the
content of 85Kr and 210Bi isotopes, which are important backgrounds
in the low-energy region.

The pp neutrino rate has been extracted by fitting the measured
energy spectrum of the selected events in the 165–590 keV energy win-
dow with the expected spectra of the signal and background components.
The energy scale in units of kiloelectronvolts is determined from the
number of struck PMTs, using a combination of calibration data col-
lected with radioactive sources deployed inside the scintillator29 and a
detailed Monte Carlo model28.

The fit is done with a software tool developed for previous Borexino
measurements28 and improved for this analysis to include the descrip-
tion of the response of the scintillator to mono-energetic electrons, to
give high statistics; a modified description of the scintillation line-
width at low energy, providing the appropriate response functions
widths for a- and b-particles (mainly from the 210Po and 14C back-
grounds); and the introduction of the synthetic pile-up.

The main components of the fit are the solar neutrino signal (the
dominant pp component and the low-energy parts of the 7Be, pep and
CNO components); the dominant 14C background and the associated
pile-up; and other identified radioactive backgrounds (85Kr, 210Bi,
210Po and 214Pb). The free fit parameters are the rates of the pp solar
neutrinos and of the 85Kr, 210Bi and 210Po backgrounds. The 7Be neut-
rino rate is constrained at the measured value17 within the error, and
pep and CNO neutrino contributions are fixed at the levels of the SSM9,
taking into account the values of the neutrino oscillation parameters25.
The 14C and the synthetic pile-up rates are determined from the data
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Figure 2 | Energy spectra for all the solar neutrino and radioactive
background components. All components are obtained from analytical
expressions, validated by Monte Carlo simulations, with the exception of the
synthetic pile-up, which is constructed from data (see text for details).
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Figure 1 | Solar neutrino energy spectrum. The flux (vertical scale) is given in
cm22 s21 MeV21 for continuum sources and in cm22 s21 for mono-energetic
ones. The quoted uncertainties are from the SSM9.
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Extended Data Figure 4 | Study of the low energy part of the spectrum.
Comparison of the spectrum obtained with the main trigger (black) and by
selecting events falling in the late part of the acquisition window triggered by
preceding events (red). Above 45 struck PMTs, the spectral shapes coincide.

The threshold effect for self-triggered events (black) is clear. The residual
threshold effect at lower energy in the red curve is due to the finite efficiency for
identifying very low-energy events within a triggered data window.
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Extended Data Figure 5 | 14C spectrum, and residuals, obtained from events
triggered by a preceding event. a, Spectrum. b, Relative residuals of a fit

with the 14C b-emission spectrum (in units of standard deviations). The error
bars thus represent 61s intervals.

ARTICLE RESEARCH

Macmillan Publishers Limited. All rights reserved©2014

Michael	
  Wurm	
  (JGU	
  Mainz/PRISMA) 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  First	
  	
  measurement	
  of	
  pp-­‐neutrinos	
  in	
  Borexino 	
   	
   	
   	
   	
   	
   	
  19	
  



Pile-­‐up	
  spectrum	
  from	
  syntheIc	
  pile-­‐up	
  

! SyntheMc	
  method	
  uses:	
  
Random	
  real	
  event	
  samples	
  
delayed	
  14C	
  events	
  (no	
  LE	
  cut-­‐off)	
  

! Real	
  PMT	
  hit	
  paperns	
  of	
  both	
  
events	
  are	
  overlayed	
  
"	
  reconstructed	
  by	
  regular	
  
	
  	
  	
  	
  	
  analysis	
  code	
  

! pile-up energy spectrum



Energy estimator: number of hit PMTs
0 50 100 150 200 250

PM
T

Co
un

ts
 / 

1 
N

-110

1

10

210

310

Extended Data Figure 6 | Energy spectrum of the pile-up data for the
standard cuts. The small bump around 150 struck PMTs (,400 keV in

Figs 2 and 3) is due to the pile-up of 14C with 210Po; at lower energies, pile-up is
dominated by 14C114C, and by 14C1dark noise.
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pp-­‐rate	
  from	
  spectral	
  fit	
  

independently and fixed in the fit, allowing for a variation consistent
with their measured uncertainty. The 214Pb rate is fixed by the mea-
sured rate of fast, time-correlated 214Bi(b)–214Po(a) coincidences. The
scintillator light yield and two energy resolution parameters are left free
in the fit.

The energy spectrum with the best-fit components is shown in Fig. 3.
The corresponding values of the fitted parameters are given in Table 1.

Many fits have been performed with slightly different conditions to
estimate the robustness of the analysis procedure. In particular, we varied
the energy estimator, the fit energy range, the data selection criteria and
the pile-up evaluation method (Methods). The root mean square of the
distribution of all the fits is our best estimate of the systematic error (7%).
In addition, a systematic uncertainty (2%) due to the nominal fiducial
mass determination is added in quadrature; this was obtained from cal-
ibration data by comparing the reconstructed and nominal positions of
a (222Rn–14C) radioactive source located near the border of the fiducial
volume29. Other possible sources of systematic errors, like the depend-
ence of the result on the details of the energy scale definition and on the
uncertainties in the 14C and 210Bi b-decay shape factors, were investi-
gated and found to be negligible (Methods). We also verified that vary-
ing the pep and CNO neutrino rates within the measured or theoretical
uncertainties changed the pp neutrino rate by less than 1%. We finally
confirmed that the fit performed without constraining the 14C rate returns
a 14C value consistent with the one previously measured independently
(see above) and does not affect the pp neutrino result. The systematic
errors are given in Table 1 for all fitted species.

We note that the very low 85Kr rate (Table 1) is consistent with the
independent limit (,7 c.p.d. per 100 t, 95% confidence level) obtained
by searching for the b–c delayed coincidence 85Kr R 85mRb R 85Rb
(lifetime of the intermediate metastable isotope, t 5 1.46 ms; branch-
ing ratio, 0.43%).

We have checked for possible residual backgrounds generated by
nuclear spallation processes produced by cosmic ray muons that inter-
act in the detector. We detect these muons with .99.9% efficiency30.
We increased the time window for the muon veto from 300 ms to 5 s and
observed no difference in the results. Furthermore, we searched for other
possible background due to radioisotopes with sizeable natural abun-
dances and sufficiently long half-lives to survive inside the detector over
the timescale of this measurement. These include low-energya-emitters
such as 222Rn and 218Po (both belonging to the radon decay chain), 147Sm
and 148Sm, and b-emitters (7Be), which are all estimated to be negligible
and are excluded from the final fit. One b-emitter, 87Rb (half-life, t1/2 5
4.7 3 1010 yr; 28% isotopic abundance; Q 5 283.3 keV), is of particular
concern because of the relatively high abundance of Rb in the Earth’s
crust. Rubidium is an alkali chemically close to potassium but typically
2,000–4,000 times less abundant in the crust. Under these assumptions,
and using the measured 40K (t1/2 5 0.125 3 1010 yr; 0.0117% isotopic
abundance) activity in the fiducial volume, that is, ,0.4 c.p.d. per 100 t at
the 95% confidence level18, the 87Rb activity in the Borexino scintillator
can be constrained to be much less than 0.1 c.p.d. per 100 t, which is neg-
ligible for this analysis. A deviation from the crustal isotopic ratio by a factor
of 100 would still keep this background at ,1 c.p.d. per 100 t.

The solar pp neutrino interaction rate measured by Borexino is 144 6
13 (stat.) 6 10 (syst.) c.p.d. per 100 t. The stability and robustness of the
measured pp neutrino interaction rate was verified by performing fits
with a wide range of different initial conditions. The absence of pp solar
neutrinos is excluded with a statistical significance of 10s (Methods).
Once statistical and systematic errors are added in quadrature and the
latest values of the neutrino oscillation parameters25 are taken into ac-
count, the measured solar pp neutrino flux is (6.6 6 0.7) 3 1010 cm22 s21.
This value is in good agreement with the SSM prediction9 (5.98 3 (1 6
0.006) 3 1010 cm22 s21). It is also consistent with the flux calculated
by performing a global analysis of all existing solar neutrino data, in-
cluding the 8B, 7Be and pep fluxes and solar neutrino capture rates31,32.
Finally, the probability that pp neutrinos produced in the core of the
Sun are not transformed into muon or tau neutrinos by the neutrino
oscillation mechanism is found to be P(ne R ne) 5 0.64 6 0.12, provid-
ing a constraint on the Mikheyev–Smirnov–Wolfenstein large-mixing-
angle (MSW-LMA) solution25,33,34 in the low-energy vacuum regime
(Methods).

Outlook
The proton–proton fusion reaction in the core of the Sun is the keystone
process for energy production in the Sun and in Sun-like stars. The ob-
servation of the low-energy (0–420 keV) pp neutrinos produced in this
reaction was possible because of the unprecedentedly low level of radio-
activity reached inside the Borexino detector. The measured value is in
very good agreement with the predictions of both the high-metallicity
and the low-metallicity SSMs. Although the experimental uncertainty
does not yet allow the details of these models to be distinguished, this
measurement strongly confirms our understanding of the Sun. Future
Borexino-inspired experiments might be able to measure solar pp neut-
rinos with the level of precision (,1%) needed to cross-compare photon
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Figure 3 | Fit of the energy spectrum between 165 and 590 keV. a, The best-
fit pp neutrino component is shown in red, the 14C background in dark
purple and the synthetic pile-up in light purple. The large green peak is 210Po
a-decays. 7Be (dark blue), pep and CNO (light blue) solar neutrinos, and 210Bi
(orange) are almost flat in this energy region. The values of the parameters
(in c.p.d. per 100 t) are in the inset above the figure. b, Residuals. Error bars, 1s.

Table 1 | Results from the fit to the energy spectrum
Parameter Rate 6 statistical error

(c.p.d. per 100 t)
Systematic error
(c.p.d. per 100 t)

pp neutrino 144 6 13 610
85Kr 1 6 9 63
210Bi 27 6 8 63
210Po 583 6 2 612

The best-fit value and statistical uncertainty for each component are listed together with its systematic
error. The x2 per degree of freedom of the fit is x2/d.o.f. 5 172.3/147.
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Extended Data Figure 2 | Survival probability of electron-neutrinos
produced by the different nuclear reactions in the Sun. All the numbers are
from Borexino (this paper for pp, ref. 17 for 7Be, ref. 18 for pep and ref. 19
for 8B with two different thresholds at 3 and 5 MeV). 7Be and pep neutrinos are
mono-energetic. pp and 8B are emitted with a continuum of energy, and the
reported P(ne R ne) value refers to the energy range contributing to the

measurement. The violet band corresponds to the 61s prediction of
the MSW-LMA solution25. It is calculated for the 8B solar neutrinos,
considering their production region in the Sun which represents the
other components well. The vertical error bars of each data point
represent the 61s interval; the horizontal uncertainty shows the neutrino
energy range used in the measurement.
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(equation (1)) rate to be 131 6 2 counts per day (c.p.d.) per 100 t of
target scintillator.

The scintillation light generated by a 100 keV event typically induces
signals in ,50 photomultiplier tubes (PMTs). This allows for a low de-
tection threshold (,50 keV), much less than the maximum electron recoil
energy of pp neutrinos (Emax 5 264 keV).

The pp neutrino analysis is performed through a fit of the energy dis-
tribution of events selected to maximize the signal-to-background ratio.
The selection criteria (Methods) remove residual cosmic muons, decays of
muon-produced isotopes, and electronic noise events. Furthermore, to
suppress background radiation from external detector components, only
events whose position is reconstructed inside the central detector volume
(the ‘fiducial volume’: 86 m3, 75.5 t) are used in the analysis. The fit is done
within a chosen energy interval and includes all relevant solar neutrino
components and those from various backgrounds, mostly from resid-
ual radioactivity traces dissolved in the scintillator.

Figure 2 shows a calculation of the spectral shape of the pp neutrino
signal (thick red line), as well as of the other solar neutrino components
(7Be, pep and CNO), and of the relevant backgrounds (14C, intrinsic to
the organic liquid scintillator; its ‘pile-up’ (see definition below); 210Bi;
210Po; 85Kr; and 214Pb), all approximately at the observed rates in the data.
The pp neutrino spectral component is clearly distinguished from those
of 85Kr, 210Bi, CNO and 7Be, all of which have flat spectral shapes in the
energy region of the fit. Most of the pp neutrino events are buried

under the vastly more abundant 14C, which is ab-emitter with a Q value
of 156 keV. In spite of its tiny isotopic fraction in the Borexino scintil-
lator (14C/12C < 2.7 3 10218), 14Cb-decay is responsible for most of the
detector triggering rate (,30 counts s21 at our chosen trigger thresh-
old). The 14C and pp neutrino energy spectra are, however, distinguish-
able in the energy interval of interest.

The 14C rate was determined independently from the main analysis,
by looking at a sample of data in which the event causing the trigger is
followed by a second event within the acquisition time window of 16ms.
This second event, which is predominantly due to 14C, does not suffer
from hardware trigger-threshold effects and can thus be used to study
the rate and the spectral shape of this contaminant. We measure a 14C
rate of 40 6 1 Bq per 100 t. The error accounts for systematic effects due
to detector response stability in time, uncertainty in the 14C spectral
shape27, and fit conditions (Methods).

An important consideration in this analysis were the pile-up events:
occurrences of two uncorrelated events so closely in time that they can-
not be separated and are measured as a single event. Figure 2 shows the
expected pile-up spectral shape, which is similar to that of the pp neutrinos.
Fortunately, the pile-up component can be determined independently,
using a data-driven method, which we call ‘synthetic pile-up’ (Methods).
This method provides the spectral shape and the rate of the pile-up com-
ponent, and is constructed as follows. Real triggered events without any
selection cuts are artificially overlapped with random data samples. The
combined synthetic events are selected and reconstructed using the same
procedure applied to the regular data. Thus, some systematic effects, such
as the position reconstruction of pile-up events, are automatically taken
into account. The synthetic pile-up is mainly due to the overlap of two 14C
events, but includes all possible event combinations, for example 14C with
the external background, PMT dark noise or 210Po. 14C–14C events dom-
inate the synthetic pile-up spectrum between approximately 160 and
265 keV. The fit to the 14C–14C pile-up analytical shape in this energy
region gives a total rate for 14C–14C pile-up events of 154 6 10 c.p.d. per
100 t in the whole spectrum, without threshold.

Measurement of the pp neutrino flux
The data used for this analysis were acquired from January 2012 to
May 2013 (408 days of data; Borexino Phase 2). This is the purest data
set available, and was obtained after an extensive purification campaign
that was performed in 2010 and 201128 and reduced, in particular, the
content of 85Kr and 210Bi isotopes, which are important backgrounds
in the low-energy region.

The pp neutrino rate has been extracted by fitting the measured
energy spectrum of the selected events in the 165–590 keV energy win-
dow with the expected spectra of the signal and background components.
The energy scale in units of kiloelectronvolts is determined from the
number of struck PMTs, using a combination of calibration data col-
lected with radioactive sources deployed inside the scintillator29 and a
detailed Monte Carlo model28.

The fit is done with a software tool developed for previous Borexino
measurements28 and improved for this analysis to include the descrip-
tion of the response of the scintillator to mono-energetic electrons, to
give high statistics; a modified description of the scintillation line-
width at low energy, providing the appropriate response functions
widths for a- and b-particles (mainly from the 210Po and 14C back-
grounds); and the introduction of the synthetic pile-up.

The main components of the fit are the solar neutrino signal (the
dominant pp component and the low-energy parts of the 7Be, pep and
CNO components); the dominant 14C background and the associated
pile-up; and other identified radioactive backgrounds (85Kr, 210Bi,
210Po and 214Pb). The free fit parameters are the rates of the pp solar
neutrinos and of the 85Kr, 210Bi and 210Po backgrounds. The 7Be neut-
rino rate is constrained at the measured value17 within the error, and
pep and CNO neutrino contributions are fixed at the levels of the SSM9,
taking into account the values of the neutrino oscillation parameters25.
The 14C and the synthetic pile-up rates are determined from the data
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Figure 2 | Energy spectra for all the solar neutrino and radioactive
background components. All components are obtained from analytical
expressions, validated by Monte Carlo simulations, with the exception of the
synthetic pile-up, which is constructed from data (see text for details).
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Figure 1 | Solar neutrino energy spectrum. The flux (vertical scale) is given in
cm22 s21 MeV21 for continuum sources and in cm22 s21 for mono-energetic
ones. The quoted uncertainties are from the SSM9.
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(equation (1)) rate to be 131 6 2 counts per day (c.p.d.) per 100 t of
target scintillator.

The scintillation light generated by a 100 keV event typically induces
signals in ,50 photomultiplier tubes (PMTs). This allows for a low de-
tection threshold (,50 keV), much less than the maximum electron recoil
energy of pp neutrinos (Emax 5 264 keV).

The pp neutrino analysis is performed through a fit of the energy dis-
tribution of events selected to maximize the signal-to-background ratio.
The selection criteria (Methods) remove residual cosmic muons, decays of
muon-produced isotopes, and electronic noise events. Furthermore, to
suppress background radiation from external detector components, only
events whose position is reconstructed inside the central detector volume
(the ‘fiducial volume’: 86 m3, 75.5 t) are used in the analysis. The fit is done
within a chosen energy interval and includes all relevant solar neutrino
components and those from various backgrounds, mostly from resid-
ual radioactivity traces dissolved in the scintillator.

Figure 2 shows a calculation of the spectral shape of the pp neutrino
signal (thick red line), as well as of the other solar neutrino components
(7Be, pep and CNO), and of the relevant backgrounds (14C, intrinsic to
the organic liquid scintillator; its ‘pile-up’ (see definition below); 210Bi;
210Po; 85Kr; and 214Pb), all approximately at the observed rates in the data.
The pp neutrino spectral component is clearly distinguished from those
of 85Kr, 210Bi, CNO and 7Be, all of which have flat spectral shapes in the
energy region of the fit. Most of the pp neutrino events are buried

under the vastly more abundant 14C, which is ab-emitter with a Q value
of 156 keV. In spite of its tiny isotopic fraction in the Borexino scintil-
lator (14C/12C < 2.7 3 10218), 14Cb-decay is responsible for most of the
detector triggering rate (,30 counts s21 at our chosen trigger thresh-
old). The 14C and pp neutrino energy spectra are, however, distinguish-
able in the energy interval of interest.

The 14C rate was determined independently from the main analysis,
by looking at a sample of data in which the event causing the trigger is
followed by a second event within the acquisition time window of 16ms.
This second event, which is predominantly due to 14C, does not suffer
from hardware trigger-threshold effects and can thus be used to study
the rate and the spectral shape of this contaminant. We measure a 14C
rate of 40 6 1 Bq per 100 t. The error accounts for systematic effects due
to detector response stability in time, uncertainty in the 14C spectral
shape27, and fit conditions (Methods).

An important consideration in this analysis were the pile-up events:
occurrences of two uncorrelated events so closely in time that they can-
not be separated and are measured as a single event. Figure 2 shows the
expected pile-up spectral shape, which is similar to that of the pp neutrinos.
Fortunately, the pile-up component can be determined independently,
using a data-driven method, which we call ‘synthetic pile-up’ (Methods).
This method provides the spectral shape and the rate of the pile-up com-
ponent, and is constructed as follows. Real triggered events without any
selection cuts are artificially overlapped with random data samples. The
combined synthetic events are selected and reconstructed using the same
procedure applied to the regular data. Thus, some systematic effects, such
as the position reconstruction of pile-up events, are automatically taken
into account. The synthetic pile-up is mainly due to the overlap of two 14C
events, but includes all possible event combinations, for example 14C with
the external background, PMT dark noise or 210Po. 14C–14C events dom-
inate the synthetic pile-up spectrum between approximately 160 and
265 keV. The fit to the 14C–14C pile-up analytical shape in this energy
region gives a total rate for 14C–14C pile-up events of 154 6 10 c.p.d. per
100 t in the whole spectrum, without threshold.

Measurement of the pp neutrino flux
The data used for this analysis were acquired from January 2012 to
May 2013 (408 days of data; Borexino Phase 2). This is the purest data
set available, and was obtained after an extensive purification campaign
that was performed in 2010 and 201128 and reduced, in particular, the
content of 85Kr and 210Bi isotopes, which are important backgrounds
in the low-energy region.

The pp neutrino rate has been extracted by fitting the measured
energy spectrum of the selected events in the 165–590 keV energy win-
dow with the expected spectra of the signal and background components.
The energy scale in units of kiloelectronvolts is determined from the
number of struck PMTs, using a combination of calibration data col-
lected with radioactive sources deployed inside the scintillator29 and a
detailed Monte Carlo model28.

The fit is done with a software tool developed for previous Borexino
measurements28 and improved for this analysis to include the descrip-
tion of the response of the scintillator to mono-energetic electrons, to
give high statistics; a modified description of the scintillation line-
width at low energy, providing the appropriate response functions
widths for a- and b-particles (mainly from the 210Po and 14C back-
grounds); and the introduction of the synthetic pile-up.

The main components of the fit are the solar neutrino signal (the
dominant pp component and the low-energy parts of the 7Be, pep and
CNO components); the dominant 14C background and the associated
pile-up; and other identified radioactive backgrounds (85Kr, 210Bi,
210Po and 214Pb). The free fit parameters are the rates of the pp solar
neutrinos and of the 85Kr, 210Bi and 210Po backgrounds. The 7Be neut-
rino rate is constrained at the measured value17 within the error, and
pep and CNO neutrino contributions are fixed at the levels of the SSM9,
taking into account the values of the neutrino oscillation parameters25.
The 14C and the synthetic pile-up rates are determined from the data
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Figure 2 | Energy spectra for all the solar neutrino and radioactive
background components. All components are obtained from analytical
expressions, validated by Monte Carlo simulations, with the exception of the
synthetic pile-up, which is constructed from data (see text for details).
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Figure 1 | Solar neutrino energy spectrum. The flux (vertical scale) is given in
cm22 s21 MeV21 for continuum sources and in cm22 s21 for mono-energetic
ones. The quoted uncertainties are from the SSM9.
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