#### Search for sterile neutrino oscillations with SOX/Borexino

Matteo Agostini on behalf of the SOX/Borexino Collaboration

Technische Universität München (TUM), Germany

Astroteilchenphysik in Deutschland - Status und Perspektiven 2014 Karlsruhe Institute of Technology, Sep 30 - Oct 2, 2014





### Experimental hints for sterile neutrinos

#### $\frac{(\overline{\nu})_{e}}{v_{e}}$ disappearance:

- $\circ$  SAGE & GALLEX:  $\sim$  3  $\sigma$  deficit measured-to-expected count rate in calibrations with  $^{51}{\rm Cr}$  and  $^{37}{\rm Ar}$
- $\circ$  reactor anomaly:  $\sim$  3  $\sigma$  overall deficit measured-to-expected  $\bar{\nu}_e$  flux R=0.927  $\pm$  0.023

 $\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e}$  appearance/disappearance:

 $\circ$  LSND:  $>3\,\sigma$  signal for oscillations due to  $\Delta m^2_{41}\gtrsim 0.2\,{\rm eV^2}$ 

MiniBooNE: inconclusive results

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  compatible with LSND /  $\nu_{\mu} \rightarrow \nu_{e}$  in tension

[A. Aguilar et al, Phys.Rev.D 64, 112007. Aguilar et al, PRL 110 161801 (2013)]







[G. Mention et al., Phys. Rev. D 83, 073006. Updated in white paper, arxiv:1204.5379]

#### Interpretation in the 3+1 framework

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \end{pmatrix}, \ \Delta m_{41}^{2}$$

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^{2}(2\theta_{\alpha\alpha}) \sin^{2} \frac{\Delta m_{41}^{2}L}{4E} \qquad P(\nu_{\alpha} \to \nu_{\beta}) = \sin^{2}(2\theta_{\alpha\beta}) \sin^{2} \frac{\Delta m_{41}^{2}L}{4E}$$



[J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, JHEP 1305 (2013) 050] Matteo Agostini (TU München)

### Global oscillation data fit (3+1 scenario)



Tension between appearance and disappearance data:

- allowed region:  $\Delta m^2_{41} \in [0.8, 2.2] \, \mathrm{eV^2}$  (Giunti et al.)
- stronger tension observed by other groups (Kopp et al., Conrad et al.)
- tension is reduced when considering 3+2 or 3+3 models

### Experimental status & perspectives

Many experimental approaches based on neutrinos from radioactive sources, reactors, atmospheric muons, accelerators...:

- SOX (first results in 2016): radioactive sources + Borexino LNGS (Italy)
- STEREO (first results in 2016): reactor + Gd-loaded liquid scintillator detector ILL (France)
- IceCube (analysis on-going): MSW effect on atmospheric neutrinos
- FNAL accelerator program
- KATRIN: high-precision measurement of the beta-decay kinematics



[Taken from D. Lhuillier (Neutrino 14)]





[A. Esmaili et al., JHEP 1312 (2013)]

# SOX: Short distance $(\vec{\nu}_e)$ Oscillations with BoreXino



# SOX: Short distance $\stackrel{(r)}{\nu}_{e}$ Oscillations with BoreXino

A project of the Borexino collaboration + CEA. Strong involvement of Germany: TU München, Univ. Hamburg, Univ. Mainz, Univ. Tübingen

- Borexino detector:
  - 270 t of liquid scintillator
  - 2200 PMTs
  - @ LNGS

• Ultra-intense  $\bar{\nu}/\nu$  sources (R=8.5 m):

- 100 kCi <sup>144</sup>Ce-<sup>144</sup>Pr ( $T_{1/2} = 285 \,\mathrm{d}$ )
- 10 MCi <sup>51</sup>Cr  $(T_{1/2} = 28 \text{ d})$
- Project time-schedule:
  - end 2015: beginning data taking with <sup>144</sup>Ce source
  - middle 2016: first results
  - beginning 2017: end of <sup>144</sup>Ce data taking
  - middle 2017: <sup>51</sup>Cr data taking



## <sup>144</sup>Ce-<sup>144</sup>Pr source – emitted flux

- 100 kCi initial activity
- $\beta^-$  decay chain: <sup>144</sup>Ce  $\rightarrow^{144}$ Pr  $+ e^- + \bar{\nu}_e$ <sup>144</sup>Pr  $\rightarrow^{144}$ Nd  $+ e^- + \bar{\nu}_e$
- $T_{1/2}(^{144}\text{Ce}) = 285 \text{ d}$
- $T_{1/2}(^{144}\text{Pr}) = 17 \text{ m}$





- Q-value(<sup>144</sup>Pr) = 3 MeV
- detection via inverse beta decay

## <sup>144</sup>Ce-<sup>144</sup>Pr source – detection concept

- ν
  <sub>e</sub> interact via inverse beta decay: prompt signal: e<sup>+</sup>/e<sup>-</sup> annihilation delayed signal: neutron absorption (2.2 MeV)
- background free:
   o enlarged fiducial volume
   o 240 t target mass
- oscillatory pattern in space and energy inside Borexino detector volume:  $\Delta m_{41}^2 = 2 \text{ eV}^2 \rightarrow <3.6 \text{ m osc. length}$
- $10^4$  events in 1.5 yr
- event reconstruction accuracy in Borexino:  $\sim 5\%$  energy resolution  $\sim 10 \text{ cm}$  spatial resolution



[Cribier et al., PRL 107, 201801 (2011)]

## <sup>144</sup>Ce-<sup>144</sup>Pr source – detection concept

- $\bar{\nu}_e$  interact via inverse beta decay: prompt signal:  $e^+/e^-$  annihilation delayed signal: neutron absorption (2.2 MeV)
- background free:
   o enlarged fiducial volume
   o 240 t target mass
- oscillatory pattern in space and energy inside Borexino detector volume:  $\Delta m_{41}^2 = 2 \text{ eV}^2 \rightarrow <3.6 \text{ m osc. length}$
- $10^4$  events in 1.5 yr
- event reconstruction accuracy in Borexino:  $\sim 5\%$  energy resolution  $\sim 10 \text{ cm}$  spatial resolution



# $^{144}\mbox{Ce}\,\mbox{-}^{144}\mbox{Pr}$ source – production and transport

Produced by chemical extraction of exhausted nuclear fuel (Mayak)

1t of fuel (KOLA plant) –> 3 kg of Ce –> 32 g of  $^{144}\mbox{Ce}$  –> 100 kCi

#### Extraordinary safety regulations:

- encapsulation in massive tungstate shielding
- transportation logistic and authorizations
- handling at LNGS





# <sup>51</sup>Cr source – overview

<sup>51</sup>Cr source features:

- activity of 10 MCi
- electron capture with Q-value of 753 keV:
   ο 4 mono-energetic ν<sub>e</sub> lines
- $T_{1/2} = 28 \text{ d:}$   $\circ \sim 1 \text{ week transportation from Oak Ridge (NL)}$  $\circ \text{ short data taking of the order of 100 d}$



[G. Bellini et al., JHEP 08 (2013) 038]

Matteo Agostini (TU München)



Experimental signature:

- $\nu_e + e^- \rightarrow \nu_e + e^-$  (electron recoil)
- expected 10<sup>4</sup> events
- background from solar neutrinos and internal <sup>210</sup>Po
- analysis based on count-rate dependence from time & position

#### Source deployment and characterization



## Thermal calorimeter

Source characterization:

- $\bullet$  activity measurement with  $\sim 1\%$  accuracy
- <sup>144</sup>Ce source: measurement prior data taking and then repeated at regular time intervals
- <sup>51</sup>Cr source: continuous measurement in the pit during data taking
- TUM/Genova thermal calorimeter:

   copper heat-exchanger
   vacuum chamber with radiation shields

water line for heat extractionwater temperature and flow:

- Activity  $\propto$  Power  $\propto \Delta T \cdot \Phi$
- Mainz/Tübingen: heat source for calibration/mock-up
- alternative setup for first measurement under development at CEA



## Sensitivity



Matteo Agostini (TU München)

## Sensitivity

- $\bullet\,$  signal discovery or exclusion in 1.5 yr with  $^{144}\text{Ce}$
- $\bullet\,$  sensitivity enhanced by combining  $^{144}\text{Ce}$  with  $^{51}\text{Cr}\,$
- <sup>51</sup>Cr extremely important to confirm signal
- systematic uncertainties dominated by μ<sub>e</sub> flux:
   o source activity
   o neutrino energy distribution



#### Source activity uncertainties:

#### Energy distribution uncertainties:



[From B. Neumair (TUM). Likelihood ratio analysis based on Asimov data sets]

- Sterile neutrinos: complicated field, many datasets, need for conclusive results
- Global fits limit parameter space to:  $\Delta m^2_{41} \sim 1\,{
  m eV}^2$  & sin  $^22 heta_{ee}\sim 0.1$
- SOX: direct search for short baseline oscillations in the Borexino detector with  $\bar{\nu}_e$  (<sup>144</sup>Ce) and  $\nu_e$  (<sup>51</sup>Cr) radioactive sources
- <sup>144</sup>Ce-<sup>144</sup>Pr data taking starting in fall 2015 to conclusively probe the parameter space of interest. First physics results already in 2016!
- <sup>51</sup>Cr data taking conceived in 2017: crucial in case of a positive signal