Next Generation IceCube Neutrino Observatory

Marek Kowalski KIT, 30.9.2014

Next Generation IceCube (NGIC)

The IceCube Neutrino Observatory

IceCube

- 86 Strings, 5360 DOMs
- E_{thresh} ~ 100 GeV
- → astrophysical neutrinos

digital optical module (DOM) housing 10 inch PMT

The IceCube Neutrino Observatory

IceCube

- 86 Strings, 5360 DOMs
- E_{thresh} ~ 100 GeV
- → astrophysical neutrinos

Extragalatic origin of cosmic neutrinos?

Current Sensitivity

Current Sensitivity x 10

Current Sensitivity x 10

More science:

- ♦ Neutrino flavor composition
 - \rightarrow probing the conditions at origin
- ♦ Spectral shape
 - \rightarrow connecting to cosmic rays
- ♦ Cosmogenic neutrinos
 - \rightarrow composition and prop. of UHE cosmic rays
- ♦ Galactic sources
 - → PeVatron accelerators

Configuration studies

Configuration studies

- Surface area: ~5 km²
- Volume: ~6.5 km³
- Angular resolution: 0.2-0.6°

Surface Veto

- Surface detector for ~1 PeV cosmic primary to reject most atmospheric muon AND neutrino background above 100 TeV.
- > 100 km² surface veto $\Rightarrow \sim 5$ bg. free cosmic neutrinos / yr

$IceCube \rightarrow DeepCore$

IceCube

- 86 Strings
- E_{thresh} ~ 100 GeV
- → astrophysical neutrinos

DeepCore

- 8 denser strings
- E_{thresh} ~ 10 GeV
- → neutrino oscillations

Initial demonstrator analysis: Gross et al. (TUM), PRL (2013)

$IceCube \rightarrow DeepCore$

IceCube

- 86 Strings
- E_{thresh} ~ 100 GeV
- → astrophysical neutrinos

DeepCore

- 8 denser strings
- E_{thresh} ~ 10 GeV
- → neutrino oscillations

Initial demonstrator analysis: Gross et al. (TUM), PRL (2013)

$IceCube \rightarrow DeepCore$

IceCube

- 86 Strings
- E_{thresh} ~ 100 GeV
- → astrophysical neutrinos

DeepCore

- 8 denser strings
- E_{thresh} ~ 10 GeV
- → neutrino oscillations

Initial demonstrator analysis: Gross et al. (TUM), PRL (2013)

$\mathsf{IceCube} \to \mathsf{DeepCore} \to \mathsf{PINGU}$

IceCube

- 86 Strings
- E_{thresh} ~ 100 GeV
- → astrophysical neutrinos

DeepCore

- 8 denser strings
- E_{thresh} ~ 10 GeV
- → neutrino oscillations

PINGU (planed)

- 40 strings
- E_{thresh} ~ 1 GeV
- → neutrino mass hierarchy

Letter of Intent, arXiv:1401.2046

Neutrino Oscillations with atmospheric Neutrinos

 $v_{\rm H}$

 ν_{μ}

Vμ

 ν_{μ}

- First oscillation minimum at • 24 GeV, i.e. DeepCore energies
- Hierarchy-dependent matter • effects below 12 GeV (e.g. Akhmedov et al. JHEP2013)

PINGU and the Neutrino Mass Hierarchy

- Cannot distinguish v from v directly rely instead on differences in fluxes and cross sections
- Distinctive NMH-dependent signatures for tracks and cascades
- Full simulation for detector efficiency, reconstruction, and particle ID

PINGU and the Neutrino Mass Hierarchy

With baseline geometry, for PINGU a determination of the mass hierarchy with 3σ significance appears possible with 3.5 years of data

- Optimization of analysis techniques and more detailed treatment of systematics underway
- Synergy with JUNO: Nearly a factor two better constraints from combination (e.g. Blennow, Schwetz, arXiv: 1306.3988)
- And there is more: Neutrino oscillartions, dark matter,...

PINGU and the Neutrino Mass Hierarchy

With baseline geometry, for PINGU a determination of the mass hierarchy with 3σ significance appears possible with 3.5 years of data

- Optimization of analysis techniques and more detailed treatment of systematics underway.
- Synergy with JUNO: Nearly a factor two better constraints from combination (e.g. Blennow, Schwetz, arXiv: 1306.3988)
- And there is more: Neutrino oscillartions, dark matter,...

The IceCube-PINGU Collaboration

University of Alberta-Edmonton University of Toronto

USA

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University** Pennsylvania State University South Dakota School of Mines & Technology Southern University and A&M College **Stony Brook University** University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls **Yale University**

Chiba University University of Tokyo

> Ingkyunkwan University, 🔎 Korea

> > UK University of Oxford University of Manchester

lapan

Belgium Université Libre de Bruxelles Université de Mons Universiteit Gent Vrije Universiteit Brussel

Sweden Stockholms universitet Uppsala universitet

Germany

Deutsches Elektronen–Synchrotron Friedrich-Alexander-Universität Erlangen-Nürnberg Humboldt-Universität zu Berlin Max-Planck-Institut für Physik **Ruhr–Universität Bochum RWTH Aachen** Technische Universität München Universität Bonn Technische Universität Dortmund Universität Mainz Universität Wuppertal

Université de Genève, Switzerland

University of Adelaide, Australia

Niels Bohr Institutet.

Denmark

University of Canterbury, New Zealand

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG)

Deutsches Elektronen–Synchrotron (DESY) Inoue Foundation for Science, Japan Knut and Alice Wallenberg Foundation **NSF-Office of Polar Programs NSF–Physics Division**

Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) **US National Science Foundation (NSF)**

Summary & Outlook

- Building on IceCube's success, expand to lower/higher energies
- Enormous science potential from neutrino astronomy to particle physics
- Next Generation IceCube planed with 120 strings and ~8000 DOMs
- NSF-MREFC proposal in 2015 for funding in 2017, significant international contributions expected
- Construction to start in 2019 PINGU first
- German community already strongly involved

Helmholtz Alliance for Astroparticle Physics

