

File Systems Introduction

Roland Laifer KIT, SCC

Funding:

Reference: bwHPC Wiki

- Most information given by this talk can be found at https://wiki.bwhpc.de
 - select cluster
 - then select File Systems

HPC System Specific Documentation

bwHPC encompasses several HPC compute clusters at different universities in Baden-Württe

Documentation differs between compute clusters, please see cluster specific overview pages

bwUniCluster 3.0

bwForCluster JUSTUS 2

bwForCluster Helix

bwForCluster NEMO 2

bwForCluster BinAC

bwForCluster BinAC 2

General Purpose, Teaching

Theoretical Chemistry, Condense

Structural and Systems Biology,

Neurosciences, Particle Physics,

Bioinformatics, Geosciences and

Bioinformatics, Astrophysics, Ge

bwHPC Clusters: operational status ☑

Further Compute Clusters in Baden-Württemberg (separate access policies):

- Datenanalyse Cluster der Hochschulen (DACHS): Datenanalyse Cluster der Hochschulen
- bwHPC tier 1: Hunter ☑ (getting access ☑)
- bwHPC ter 2: HoreKa ② (Detting access ②)

Material: Slides & Scripts

- https://indico.scc.kit.edu/event/5221/
- BwUniCluster 3.0: /opt/bwhpc/common/workshops/2025-10-21/
- HoreKa: /software/all/workshop/2025-10-21/

How to read the following slides

Abbreviation/Colour code	Full meaning
\$ command -option value	<pre>\$ = prompt of the interactive shell The full prompt may look like: user@machine:path\$ The command has been entered in the interactive shell session</pre>
<pre><integer> <string></string></integer></pre>	<> = Placeholder for integer, string etc
foo, bar	Metasyntactic variables

How to use each File System (1)

- \$HOME = Home directory
 - → Software, configuration files, final results
 - → Omit heavy I/O
- Workspaces = Working directories with lifetime
 - → Intermediate results, huge input/output data sets
 - → Scratch data which needs to be shared between nodes
 - → Omit small files, tiny block sizes, lots of metadata operations

 If not possible to omit, KIT and HoreKa users can use Workspaces on flash storage
- \$TMPDIR = Separate file system on each node using local disks
 - → Data is only available during job runtime on the local node
 - → Possibly transfer data here within a batch job
 - → All sorts of I/O allowed

How to use each File System (2)

- BeeOND = Private file system for batch job
 - → Data is only available during job runtime on the batch job nodes
 - → Possibly transfer data here within a batch job
 - → All sorts of I/O allowed, only available on bwUniCluster 3.0 and HoreKa
- External storage
 - → Archive scientific data, move data here when data sets become too large
 - → Each organization has different solutions, examples are RDA or LSDF at KIT
 - → Use huge files or compressed archives
- Summary
 - → Use \$HOME for permanent data
 - → Use workspaces for huge files and sequential I/O
 - → Use \$TMPDIR or BeeOND with many (> 10000) small files or random I/O

\$HOME = Home directory

- \$HOME is visible on all nodes of a cluster
- Properties of \$HOME on different clusters

Cluster	Quota capacity limit	Quota file limit	Backup
JUSTUS 2	400 GB per user	2 mill. per user	Yes
Helix	200 GB per user	unlimited	Snapshots
NEMO 2	100 GB per user	unlimited	No
BinAC 2	40 GB per user	unlimited	Yes
BwUniCluster 3.0	500 GB per user also limit per organization	5 mill. per user	Yes
HoreKa	10 TB per project	10 mill. per project	Yes

\$HOME on bwUniCluster 3.0

HowTo goto:

\$ cd \$HOME \$ cd

User's quota usage and limits:

\$ lfs quota -uh \$(whoami) \$HOME

```
Disk quotas for usr ka_ab1234 (uid 9999):
               Filesystem
                                                             files
                                                                              limit
                              used
                                     quota
                                             limit
                                                     grace
                                                                     quota
                                                                                      grace
/home/kit/ka_scc/ka_ab1234 22.59G
                                      500G
                                              550G
                                                             81408
                                                                    5000000 5500000
                                                                   hard limit
                              current usage
                                                  soft limit
```

- Usage rate above soft limit for grace period (7 days) will only report a warning.
- Organization quota usage and limits:

```
$ lfs quota -ph $(grep $(echo $HOME | sed -e "s|/[^/]*/[^/]*$||") \ /pfs/data6/project_ids.txt | cut -f 1 -d\ ) $HOME
```

\$HOME / \$PROJECT on HoreKa

- \$HOME and \$PROJECT are identical if your account is member of one project
 - Otherwise to change to another project which will also modify \$PROJECT:

```
$ newgrp <another project group>
```

- Project group quota usage and limits:
 - First start an interactive job (sometimes this step is not needed):

```
$ salloc -p dev cpuonly -n 1 -t 20 --mem=500
```

Show usage and limits of your project group on the \$HOME file system:

```
$ /usr/lpp/mmfs/bin/mmlsquota -j $PROJECT GROUP --block-size G -C hkn.scc.kit.edu hkfs-home
```

```
Block Limits
                                               File Limits
Filesystem type
                      GB
                          quota
                                  limit
                                              files
                                                       quota
                                                                limit
                                            4747501 10485760 11534336
home
           FILESET
                    3467
                          10240
                                  11264
                                      soft limit
                   current usage
                                                       hard limit
```


Exercise 1: Show quotas

Login to bwUnicluster 3.0 or HoreKa and show list of commands for exercises:

\$ cat /opt/bwhpc/common/workshops/2025-10-21/pfs commands.txt BwUniCluster:

\$ cat /software/all/workshop/2025-10-21/pfs commands.txt HoreKa:

Use Cut & Paste to execute the first commands which show your quotas

Workspaces = Working directories with lifetime

- Workspace: lifetime on allocated folder
 - Available on all clusters, visible on all nodes of a cluster
 - HowTo:
 - → https://wiki.bwhpc.de/e/Workspace

\$ ws_allocate foo 10	Allocate workspace foo for 10 days
<pre>\$ ws_list</pre>	List your workspaces
\$ ws_find foo	Get absolute path of workspace foo
\$ ws_extend foo 5	Extend lifetime of your workspace $f \circ o$ by 5 days from now. Number of extensions depends on cluster.
\$ ws_release foo	Manually erase your workspace foo
\$ wsF ffuc	Select non default workspace file system with -F (works for any command)

Properties of Workspaces on different clusters

Cluster	Capacity limit	File limit	Max lifetime	Max extensions
JUSTUS 2	20 TB per user	5 mill. per user	90 days	unlimited
Helix	10 TB per user	unlimited	30 days	10 times
NEMO 2	5 TB per user	1 mill. per user	100 days	99 times
BinAC	unlimited	unlimited	30 days	3 times
BwUniCluster 3.0	40 TB per user	20 mill. per user	60 days	3 times
HoreKa	250 TB per user	50 mill. per user	60 days	3 times

Exercise 2: Create workspace

Allocate two workspaces

```
$ ws_allocate ws01 30
Info: creating workspace.
/pfs/work9/workspace/scratch/myuser-ws01
remaining extensions : 3
remaining time in days: 30

$ ws_allocate -F ffuc ws_ssd 50
Info: creating workspace.
/pfs/work8/workspace/ffuc/scratch/myuser-ws_ssd
remaining extensions : 3
remaining time in days: 50
```

Exercise 3: List workspace

List workspaces

```
$ ws list
id: ws ssd
    workspace directory : /pfs/work8/workspace/ffuc/scratch/myuser-ws ssd
    remaining time : 49 days 23 hours
    creation time : Wed Oct 6 18:59:11 2021
    expiration date : Thu Nov 25 17:59:11 2021
    filesystem name : pfs6wor8
    available extensions: 3
id: ws01
    workspace directory : /pfs/work9/workspace/scratch/myuser-ws01
    remaining time : 29 days 23 hours
    creation time : Wed Oct 6 18:55:17 2021
    expiration date : Fri Nov 5 17:55:17 2021
    filesystem name : pfs7wor9
    available extensions: 3
```

Exercise 4: Find workspace path

Find workspace path and switch to it

```
$ ws_find ws01
/pfs/work9/workspace/scratch/myuser-ws01

$ ws_find -F ffuc ws_ssd
/pfs/work8/workspace/ffuc/scratch/myuser-ws_ssd

$ cd $(ws_find ws01)
$ pwd
/pfs/work9/workspace/scratch/myuser-ws01
```

Exercise 5: Release workspaces

Release workspaces

```
$ ws_release ws01
```

```
$ ws_release -F ffuc ws_ssd
```

```
$ ws_list
```