= ST INHR

National High-Performance Computing Center
bw |HPC

Batch system - Best Practices and Running parallel jobs

Andreas Baer
KIT, SCC

https://www.bwhpc.de/
https://www.nhr.kit.edu/

Reference: bwHPC

@ Most information given by this talk
can be found at https://wiki.bwhpc.de
@ Select cluster
@ Select “Batch System” or “Running Batch Jobs”

@ Workshop reservation bwUniCluster3.0

sbatch -p cpu --reservation=ws ...

Wiki

SR
B . oscson
WIKE ™

bw|HPC

DWHPC Web Page

bWHPC Systems

Documentation

Registration
Running Calculations

HPC Glossary

Support
elearning
Ticketing System
Feedback

Data storage
sDsahd
bwbataArchive

Tools

BwUniCluster3.0

The 3isthe joint high-p computer system of
ruhe Institute of Technology (KIT). The bwuniCluster 3.0 complements the four bwForClusters and their dedicated scientifi areas.

Transition bwUniCluster 2.0 - bwUniCluster 3.0

‘The HPC cluster bwuniCluster 3.0 i of bwunicluster 2.0. It feat jerated and ly nodes, with the host system of both node types consisting of classic x

To ensure that you can use the new system successfully and set up your working environment with ease, the following points should be noted.

Al users who already h on bwUnicluster 2. luster 3.0, The user

ly

Changes

Related changes
Special pages
Printable version
Permanent link
Page information

Hardware, software and the operating system have been updated and your attention in particular

o 3 up here: Summary of Changes

Migration

bwuniCluster 3.0 features a completely ystem. There i user datal
f i in operation for a period of 3 months after the new system goes liv (tll July 6, 2025).
In order to move data that s stil needed, user software, and user specific settings from the old HOME directory to the new HOME directory, or to new workspaces, instructions ar

Training & Support

« Getting started
-Learning Courses 2

« support

- FAQ

« send Feedback about Wiki pages

User Documentation

« Access: Registration, Deregistration
« Login
« s5H clients
« Data Transfer
« Hardware and Architecture
« Compute Resources
« File systems
« Cluster Specific Software

« Runnning Jobs
« Running Batch Jobs
« Running Interactive Jobs
« Interactive Computing with Jupy

https://wiki.bwhpc.de/

Reference: NHR@KIT User Documentation

@ Most information given by this talk
can be found at https://www.nhr kit.edu/userdocs

B Select cluster =

N.‘&(IT | N H R NHR@KIT User Documentation

tional High-Performance Computing Center

Select
"Using HoreKa or Haicore”
— “Batch System” Horeka Overview

Project management

Future Techns Partition (FTP) Continuous Integration Jupyter

Using HoreKa or HAICORE
Account Registration Welcome to the Tier 2 High Performance Computing system "Hochleistungsrechner Karlsruhe” (HoreKa) at KIT.

2-Factor Authentification
HoreKa is an innovative hybrid system with more than 60,000 processor cores, nearly 300 terabytes of main memory and more than 750

NVIDIA (A100 and H100) GPUs. The CPU partition is called HoreKa Blue, while the GPU partition is called HoreKa Green and the NVIDIA
H100 GPU partition is called HoreKa Teal.

Interactive Login
Hardware Overview

File Systems

The HoreKa supercomputer at
Batch system .)
= KIT (Simon Raffeiner, KIT/SCC)
Compilers & Huntimes B =
|

Parallel and GPU
Programming models

Debugging
Performance Optimization
Advanced topics

Support

& Workshop reservation HoreKa:

sbatch -p cpuonly --reservation=ws

mailto:NHR@KIT
https://www.nhr.kit.edu/userdocs/

Material: Slides & Scripts

B https://indico.scc.kit.edu/e/hpc_course_2025-10-22
@ BwuUniCluster 3.0: /opt/bwhpc/common/workshops/2025-10-22/
@ HoreKa: /software/all/workshop/2025-10-22/

How to read the following slides

$ command -option value ¢ = prompt of the interactive shell
The full prompt may look like:
user@machine:path$
The command has been entered in the interactive shell session

<integer>, <string> <> = Placeholder for integer, string etc

foo, bar Metasyntactic variables

${WORKSHOP} /opt/bwhpc/common/workshops/2025-10-22/ (bwUniCluster)
/software/all/workshops/2025-10-22/ (HoreKa)

https://indico.scc.kit.edu/e/hpc_course_2025-10-22

Outline

@ Best Practices
@ Parallel jobs
® OpenMP
& MPI
& Hybrid (MPI + OpenMP)

Best practices for job submission

SLURM long options for the batch script, short options for the command line
Set default values in the script, overwrite in command line if needed

Pass arguments to batch job on submission via command line: | $ sbatch job.sh -x argument

When using shared nodes:
@ Only requested resources available (e.g. memory; defaults apply though)
@ SSD storage is shared without resource control!

Environment and data paths
@ Always ensure a well-defined environment

module purge #SBATCH --export=NONE # do not export env
module load foo bar

@ Change to absolute path, Slurm submit directory or similar

Job script templates

@ Many software packages provide help description, example cases or job templates

& How to get it?
Search in description for example directory
=> Example Turbomole

$ module show chem/turbomole 2>&1 | grep "EXA_DIR"
/opt/bwhpc/common/chem/turbomole/7.4.1_tmolex452/bwhpc-examples

bwHPC_turbomole_single-node_tmpdir_example.sh I

#!/bin/bash

Purpose: Turbomole JOB example script for bwHPC, such as

bw{For,Uni}Cluster
H## for SINGLE NODE runs ONLY

Job monitoring

@ Do NOT run script that submits every second commands like:
® squeue

® scontrol show job <JOB_ID>
@ tail -f <Global_file_system>/<file>

® Changeto ,tail -f -s 10" etc.

® How to follow live the job progress on compute node?
@ srun --jobid=<JOB_ID> [--overlap] --pty /usr/bin/bash
® htop
® monitor local storage

Job monitoring - job report

JOB FEEDBACK ==

@ Check out resource usage for
optimization Job ID: 23482310
) Cluster: hk
@ Wallclock time User/Group: ab1234/my-project
@ cpu Account: my-project
State: COMPLETED (exit code 0)
Partition: cpuonly
@ Energy Nodes: 4
Further monitoring Cores per node: 152
=> Talk tomorrow Nodelist: hkn[0201-0202,1603-1604]
CPU Utilized: 00:21:29
CPU Efficiency: 3.59% of 09:57:52 core-walltime
Job Wall-clock time: 00:00:59
Starttime: Mon Mar 25 13:35:31 2024
Endtime: Mon Mar 25 13:36:30 2024
Memory Utilized: 25.92 GB
Memory Efficiency: 2.73) of 950.00 GB
Energy Consumed: 68710 Joule / 19.0861111111111 Watthours
Average node power draw: 1164.57627118644 Watt

& Memory

Resource specifications

@ Computing resources are clustered in several layers: E E
node = compute server
(sharing main memory, mostly 2 sockets per node)
socket = set of cpu unit (with several cores) + main memory - -
cpu = CPU Core (with two threads each) Socket Socket

task = instance of your program Node

thread = sequence for instructions
@ Hyperthreading:
@ Use of both threads per core
& Only with OpenMP, not MPI Socket Socket

@ Only in some cases beneficial => test if it improves performance
Node

How to do the exercises?

@ Login to cluster & Generate workspace ,bwhpc-course*

$ ws_allocate bwhpc-course 30

Workspace created. Duration is 720 hours.

Further extensions available: 3
/pfs/work2/workspace/scratch/zyl1234-bwhpc-course-0

@ Copy examples to your workspace
$ WORKSHOP=/opt/bwhpc/common/workshops/2025-10-22 # bwUniCluster

$ WROKSHOP=/software/all/workshops/2025-10-22 # HoreKa
$ cd $(ws_find bwhpc-course)

$ mkdir -v 2025-10-22; cd 2025-10-22

$ cp -pr ${WORKSHOP}/exercises/04 ./

Submit jobs from your workspace

$ cd $(ws_find bwhpc-course)/2025-10-22/04
$ sbatch -p {single|cpuonly} --reservation=ws [--exclusive] <jobscript>

Compile executables

We need executables ,pi_omp”, “parmmul” and “parmmul omp”
pi_omp, p P _omp

Open files “omp . README” and “parmmul . README”
=> execute commands in these files

Hints:
@ You can use cat for an easy copy paste

$ cat omp.README
module load compiler/intel

pi_omp

first compile seconds.c

icc -DFTNLINKSUFFIX -0 -c seconds.c -o seconds.o
ifort -0 —-qopenmp pi.f90 seconds.o -o pi_omp

@ You can parse the whole file with bash to execute all commands subsequently

$ bash omp.README
$ bash parmmul.README

OpenMP

@ OpenMP = Open Multi-Processing

@ Compiler directives, library routines, environment variables to enable
multi-threading on shared-memory multiprocessor platforms (e.g. on single node)

@ https://www.openmp.org

@ Single task is split into multiple threads for parallel execution
@ E.g. for loop for a matrix multiplication

@ Typical issues:

& Number of spawned threads should match resources:
typically 1 thread per core

@ Proper thread binding and mapping

https://www.openmp.org/

OpenMP parallel example

#!/bin/bash

#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --time=00:05:00

Set executable name to wariable
exe=./pi_omp

Load modules
module load compiler/intel

Setup OpenMP environment wvariable
export OMP_NUM_THREADS=${SLURM_NPROCS}

Printout number of threads
echo "No.threads = ${0MP_NUM_THREADS}"

Execute program

${exe}

Example:

${WORKSHOP}/exercises/04/omp.sh I

@ Shared memory
is restricted to 1 node.

Use the precompiled pi_omp or
store the executable in pi_omp

Do not define number
of threads explicitely.
Use environment variables.

OpenMP parallel example: thread pinning

#!/bin/bash
#SBATCH --nodes=1 Using Intel OpenMP Thread Affinity
#SBATCH --ntasks=10 for Pinning Threads differently

#SBATCH --time=00:01:00 S (WORKSHOP}/ . ~y .
Set executable mame to variable L_ ERdERsErE s Omp_v<.S I

exe=./pi_omp
Load modules
module load compiler/intel @ Submit script with different pinnings:

Setup UpenMP environment variable none

export OMP_NUM_THREADS=${SLURM_NPROCS} scatter
Use different pimning: mone, scatter, compact compact
export KMP_AFFINITY=verbose,scatter compact, 1,0

Printout number of threads @ Compare results
echo "No.threads = ${0OMP_NUM_THREADS}"

Execute program

${exe}

@ MPI = Message Passing Interface
@ Open standard for parallelization on distributed memory systems, e.g. multiple nodes

@ Program is started by wrapper (e.g. mpirun, srun, ...), spawning several tasks (on multiple nodes)

@ Each task executes the same binary
@ Differences between the tasks execution depend on the rank (task id) and total number of tasks
=> relevant for the programmer

@ Standard on https://www.mpi-forum.org

@ Variants on the clusters
® Intel-MPI

& OpenMPI
=> different versions, depending on different compilers

@ Typical issues: task assignment and binding

https://www.mpi-forum.org/

MPI process binding

@ Compute-bound job
@ One MPI task per available core

& Memory-bound job
@ One/few MPI tasks per socket or node

& Hybrid jobs (MPI + OpenMP)
@ One MPI task per socket or node
& OpenMP multithreading over the whole socket/node

MPI parallel jobs: compute-bound

#!/bin/bash

#SBATCH —--nodes=1
#SBATCH --ntasks=20
#SBATCH --time=00:05:00

Set executable name to wariable

exe=./parmmul <
Load modules
module purge

module load compiler/intel _g—
module load mpi/openmpi

Printout number of tasks

echo "No.MPI tasks = ${SLURM_NPROCS}"

Spawn for each core 1 MPI task
mpirun --bind-to core --report-bindings ${exe}

Example:

${WORKSHOP}/exercises/04/openmpi.sh I

@ Use parallel multiplication binary

® Load Intel compiler module and
OpenMPI module

@ Use mpirun to execute the
binary, print details of task
pinning.

MPI parallel jobs: memory-bound

#!/bin/bash
#SBATCH --ntasks-per-node=2

#SBATCH --time=00:05:00 ${WORKSHOP}/exercises/04/openmpi_v2.sh I

Set executable mame to variable ® 2 tasks per node
exe=./parmmul — each task can consume 45 GB

Load modules (120 GB on HoreKa)
module purge

module load compiler/intel))
module load mpi/openmpi -~ ® Loading the needed environment

Printout number of MPI tasks @ Map each MPI task to one socket
echo "No.MPI tasks = ${SLURM_NTASKS}"

Spawn only one MPI task per socket
mpirun --bind-to core --map-by socket \
--report=bindings ${exe}

MPI + OpenMP hybrid job
Spawning 1 MPI task per socket, and 20 OpenMP threads per MPI task

#!/bin/bash — EEy— .]
#SBATCH --nodes=2 ErEred e ybrid_openmpi_omp.s I

#SBATCH --ntasks-per-node=2

#SBATCH --cpus-per-task=20 Set KMP_AFFINITY

#SBATCH --time=00:05:00 to bind and map

exe=./parmmul_omp

Load modules

module load compiler/intel mpi/openmpi

Setup OpenMP env wvariable

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

export KMP_AFFINITY=verbose,scatter

Printout number of nodes = MPI tasks

echo "No. MPI tasks (nodes) = ${SLURM_NTASKS}"

echo "No. threads per node = ${0OMP_NUM_THREADS}"

Spawn only one MPI task per socket

mpirun -n ${SLURM_NTASKS} --bind-to core --map-by socket:PE=${OMP_NUM_THREADS} \
--report-bindings ${exe}

threads to cores!

Thank you for your attention.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

