Reconstruction of Long-Lived Particles (LLPs) in IDEA Tracker at FCC-ee

Masters Thesis Status and Prospects

Juliette Alimena, Matteo Presilla & Sofia Giappichini

Obedience Munkombwe | 18. September, 2025

1979 - Institut für experimentelle Teilchenphysikombwe – Reco of LLPs in IDEA Tracker at FCC-ee

CONTENTS

1. Introduction to Long-Lived Particles

2. Motivation/Benchmarks

3. My Study

Intro to Long-Lived Particles

LLPs \rightarrow Particles (SM or BSM) whose lifetimes are long enough to travel a macroscopic distance.

Standard Model LLPs

Experimental Signatures for BSM LLPs

This study will focus on beyond Standard Model LLPs

Juliette Alimena (CERN), on behalf of the FCC-ee LLP group

Motivation – Why LLPs

- **BSM motivation:** LLPs appear naturally in many models (see-saw neutrinos, axion-like particles, hidden valleys, SUSY, etc.)
- Unresolved SM puzzles: They could provide answers to
 - The origin of neutrino masses,
 - The baryon asymmetry of the Universe (BAU), and
 - The nature of Dark Matter
- Unique experimental signatures:
 - Displaced vertices, disappearing/broken tracks, delayed or stopped decays, unusual jets ("dark showers")
 - These signatures are **rare in the SM**, giving LLP searches low background and high discovery potential.
- Impact: LLPs are a "smoking gun" of new physics discovery would reshape our understanding of both particle physics and cosmology.

Motivation - Benchmarks

Example: Heavy Neutral Leptons

- Predicted in the **Type-I see-saw mechanism**, which explains the small but non-zero neutrino masses.
- Extend the SM by introducing **right-handed (sterile) neutrinos**, weakly mixed with active neutrinos.
- Can be Dirac or Majorana in nature.
- Address three major open questions in particle physics:
 - Origin of neutrino masses.
 - 2. Baryon asymmetry of the Universe (via leptogenesis)
 - 3. Nature of dark matter

arXiv:2203.05502

FCC-ee Context

- Circular e⁺e⁻ collider, \(\forall s = 91 365 \) GeV.
- Unprecedented luminosity:
 - Z pole: **150** ab⁻¹ \rightarrow ~10¹² Z bosons (idea LLPs factory)
 - WW threshold, Higgsstrahlung, top threshold runs.
- Clean e⁺e⁻ environment: ultra-low backgrounds
 - Ideal for displaced signatures
- Complementary to LHC: covers small couplings & long lifetimes inaccessible at hadron colliders.

FCC-ee Report

The Innovative Detector for E+e- Accelerator (IDEA)

- Specifically designed for FCC-ee
- Based on a sophisticated
 - Tracking system
 - Crystal dual-readout (DR)
 ECAL
 - DR fiber HCAL and
 - Muon detection system placed within the iron yoke that closes the magnetic field.

arXiv:2502.21223v4

9/18/2025

The Innovative Detector for E+e- Accelerator (IDEA) – Tracking System

High granularity Silicon Vertex Detector

• Enables the precise measurement of the vertices (5 μ m hit resolution)

The Drift Chamber (DCH)

- Lightweight, large volume (2 m radius) → Allows the tracks to be extended up to large radii to measure the charged particle momenta accurately.
- Provides up to about 112 space-point measurements per track with excellent PID capabilities provided by the cluster counting technique.

The Silicon Wrapper

 Provides a last precise measurement before the Crystal ECAL, could also provide timing information.

Figure 3: Overview of the IDEA detector layout.

arXiV:2502.21223v4

Main Idea

- Reconstruct Long-Lived Particles (LLPs) with tracker detectors in IDEA, with emphasis on the **Drift Chamber (DCH).**
- Extend tracking & reconstruction beyond prompt particles to include **displaced tracks**.
- Develop methods to identify **displaced vertices** feature of LLP decays.
- Benchmark the performance of **finding & fitting algorithms** for LLP signatures.

What Has Been Done So Far

- Reviewed FCC-ee-relevant LLP benchmarks.
- Studied reconstruction techniques used at colliders.
- Implemented and tested **Track Finding & Fitting** algorithms.
- Understood the full **simulation** → **reconstruction workflow**.
- Ran an **end-to-end chain** with a muon particle gun.

General Overview of the Workflow

Digitization & Track Finder

Digitization

- **What**: Taking the *ideal hits* from simulation and turn them into *realistic detector signals*.
 - Output: Digitized hits.

Track Finding

- Cluster digitized hits into candidate tracks.
- Method: Geometric Graph Track Finding (GGTF)

Key features:

- Works across multiple subdetectors.
- Independent of geometry and material assumptions.
- Learns hit patterns without explicit trajectory parametrizations

FCCWorkshopTracking by Andrea De Vita

Track Finding (Main Algorithm)- Geometric Graph Track Finding (GGTF)

Step 1. Preprocessing

Hits from different subdetectors are converted into **geometric objects** (points, vectors) unified in 16D multvector representation. (VTX hits \rightarrow pts, DCH hits \rightarrow vectors)

Step 2. Geometric Algebra Transformer (GATr)

The multivector hits are passed through a special neural network (ONNX), each hit \rightarrow 4D embedding vector (3-D + learned features (scalar β)).

Step 3. Object Condensation Loss

- Encourages hits from the same track to cluster in embedding space.
- **Attractive potential**:- pulls same-track hits together.
- **Repulsive potential:** pushes different-track hits apart.
- Scalar β ensures one condensation point per track.

Construction of reconstructed tracks GGTF network Cluster 1 Cluster 2 Resulting Multivector Multivector Output Reconstructed Raw hits embedding clusters Different geometric types (embedding space) (detector coordinates Object condensation loss $L(\lbrace x_i \rbrace, \lbrace \beta_i \rbrace) = Lv + L_{\beta}$

D. Garcia, B. Francois, M, Selvaggi GGNN based track finding CERN

Step 4. . Clustering → Track Candidates

- Hits clustered in embedding space
- Each cluster defines one reconstructed track.

Output: Reconstructed tracks

Track Fitting

Method: Genfit2

Inputs: Reconstructed tracks from Track Finder

- Uses **Kalman filtering** to refine the trajectory step by step, accounting for measurement errors and material effects (like scattering and energy loss).
- Uses Deterministic Annealing Filter (DAF) with β schedule (init \rightarrow final \rightarrow steps) to handle outliers.
- What it does: Each candidate track is fitted under 5 particle hypotheses: e, μ , π , K, p
- **Output:** Collection of fitted tracks from 5 particle hypothesis for analyis

arXiv:1902.04405

Pre-fit plots for Hit position spectra for DCH

Distribution of position residuals for DCH hits associated with reco tracks

- The simulation involved only muons (mu-) generated in the IP.
- Results obtained with 1000 muon-gun events, uniformly distributed in direction and momentum (0.5–5 GeV)..

✓ Confirms hits are where we expect them in the detector geometry.

Pre-fit plots for Hit position Spectra for VTX

Distribution of residuals for VTX hits associated with reconstructed tracks.

✓ Confirms the vertex detector is active and producing hits close to the IP

Some Plots After Track Finder

- The detector geometry and hit multiplicities are consistent with expectations.
- The pipeline is correctly reading and counting hits from different collections.

- The TrackFinder is behaving consistently: almost all expected hits are correctly accounted for.
- A good track-finding algorithm should associate nearly all available hits to tracks.

Current Status

1. Studying the algorithm step by step to understand its behavior and expected outputs at each stage.

```
Clustering parameters

parser.add_argument("--tbeta", default=0.6, help="tbeta clustering parameter")

parser.add_argument("--td", default=0.3, help="td clustering parameter")

args = parser.parse_args()

β schedule

parser.add_argument("--Beta_init", default=100, help="OutputFile")

parser.add_argument("--Beta_final", default=0.1, help="OutputFile")

parser.add_argument("--Beta_steps", default=10, help="OutputFile")

args = parser.parse args()
```


- What are these parameters really doing?
- Why are they assigned to these values by default?
- Are they optimized to handle displaced tracks?
- If not, how do we optimize them?

- 2. What are the most useful variables from the output root file (from particle gun) at each stage?
- 3. What are the necessary plots to validate track finding and track fitting algorithm.

Next Steps;

- Validate pipeline with SM benchmark ($Z \rightarrow \mu\mu$).
- Optimize tracking for displaced tracks (focus on DCH).
- Apply to BSM LLP benchmark.
- Study DCH background performance.
- And hoping to contribute to FCC-ee LLP sensitivity projections.

Thank You!

Questions & Feedbacks are welcome.

BACKUP

Motivation - Benchmarks

Exotic Higgs Decays

- Higgs boson can act as a portal to hidden sectors (Hidden Valley, Twin Higgs, SUSY Higgsinos, etc.).
- Hypothetical neutral LLPs may be produced in $h \rightarrow XX$
- Signatures:
 - Displaced multi-track vertices inside the tracker.
 - Displaced leptons/jets or missing energy.

Motivation - Benchmarks

Axion-Like Particles

- Predicted as **pseudo Nambu–Goldstone bosons** from broken global symmetries.
- Appear in models addressing the **strong CP** problem and are viable dark matter candidates.
- Characterized by weak couplings to SM particles → naturally long-lived.
- Typical FCC-ee search channels:

arXiv:2203.05502