Manuel.Giffels@kit.edu

mailto:Manuel.Giffels@kit.edu?subject=KSETA%20Course

Software Projects

Package C

Integration effort increases with:
= Number of packages
= Number of supported platforms
= Number of bugs

= Time since last integration

z KIT

Recap: The ATLAS Code
ATLAS code

0

| g e
(milﬁ:)ns)
420

C DB) developers

v correspondence
U ~140 ‘domains’

e.g. Tracking-Fitting) 3
©Graeme Stewart 2400 individual packages (gcc 4.9)

Impossible to integrate without automatism!

KIT

Continuous Integration (CI)

,oontinuous Integration is a software development practice where
members of a team integrate their work frequently, usually each person
integrates at least daily - leading to multiple integrations per day. Each

integration is verified by an automated build (including test) to detect
Integration errors as quickly as possible.”

Martin Fowler

KIT

Continuous Integration (CI)

Continuous Integration denotes the possibility to be always ready to
release the software to the customer, potentially after every commit

Every time new code is added to the project:

Project is built and run on all target platforms
Automated testing and codes style checking

Ensure other components of the application (like database
schema) work properly

The documentation is up-to-date and building

Automated deployment or automated release if desired

GEEK & POKE'’S LIST OF
BEST PRACTICES

TODAY: CONTINUOUS INTEGRATION
GIVES YOU THE COMFORTING
FEELING TO KNOW THAT
EVERYTHING IS NORMAL

ALL THE
AUTOMATED
TESTS HAVE
CRASHED

(]
X
[}
Q
o \\
K
[F]
@
o

-\

KIT

Advantages

. . , o "PERUAPS YOUR MACHINE IS THE
= Immediate detection of bugs and integration issues ONLY ONE WHERE IT WORKS ?

Immediate check of code style
Simplifies code review process

= Ensures a working code base for developments
Automated deployment and release (if desired)

Public name and shame towards anyone who breaks the
project

KIT

Tools

CODESHIP

EAY)) circleci

- _—

¢+Bamboo @ &> SNap

Solano Labs
a semaphore

KIT

The KSETA CI/CD Setup

Luckily the KIT GitLab has already a standard set of GitLab
runners enable to perform Continuous Integration

More about it can be found in the documentation
https://docs.qitlab.kit.edu/en/gitlab_runner/

KIT

https://docs.gitlab.kit.edu/en/gitlab_runner/

Enable Continuous Integration

To enable continuous integration in a repository, please do the
following:

= Add a .gitlab-ci.yml file to your repository

= Here is a simple example for the Scientific Calculator repository

- "kgrl-instance-standard"

age: build
image: "gitlab/gitlab-runner:ubuntu"

variables:

DISPLAY: ":99"

before_script:
- apt-get update -qq
- apt—-get install -y python3 python3-pip python3-tk xvfb
— Xvfb :99 -screen 0 1024x768x24 2>/dev/null &

script:

- ./run_test.sh A\‘(IT

Enable Continuous Integration

S Scientific Calculator &

¥ main v scientific-calculator /| + + Find file Edit v

Forked from KIT / KSETA Workshops / KSETA CSD 2025 / Scientific Calculator
1 commit ahead of the upstream repository.

a‘nn Add CI/CD workflow .
7chS57af 0 Hist
& Manuel Giffels authored 12 minutes ago ¢ @ r: istory

Create merge request

KIT

Enable Continuous Integration

Add CI/CD workflow

@ Passed Manuel Giffels created pipeline for commit 7cbh557af [8 5 minutes ago, finished 4 minutes ago
For main

latest branch €O 1job (Y 41seconds, queued for 3 seconds

Pipeline Jobs 1 Tests 0

build

® simple_example <

KIT

Enable Continuous Integration

1117 Setting up libheif-plugin-1libde265:amdé4 (1.17.6-1ubuntu4.1)
1118 Setting up libheifl:amdé4 (1.17.6-1lubuntu4.1) ...

1119 Setting up libgd3:amdé4 (2.3.3-9ubuntu5)

1120 Setting up libc-devtools (2.39-Oubuntu8.6)

1121 Setting up libheif-plugin-aomenc:amdé4 (1.17.6-1ubuntu4.1)
1122 Processing triggers for libc-bin (2.39-Oubuntu8.6) ...

1123 $ Xvfb :99 -screen 0 1024x768x24 2>/dev/null &

1124 $./run_test.sh

111745 55000000000 0000300000a00000

1AI2)S cocooooooo0o00000000000000000005000000000000000C0000E00D0D0O0NDDEO0ODOS
1127 Ran 27 tests in 0.954s

1128 0K

v 1129 Cleaning up project directory and file based variables 00:00
1130 Job succeeded

Enable Continuous Integration

More advanced example using different stages (style, test):

Update gitlab CI/CD

'kgrl-instance-standard"

: "gitlab/gitlab-runner:ubuntu® @ Passed Manuel Giffels created pipeline for commit d983d335 [f% 2 minutes ago, finished 1 minute ago
For main
ript:
apt-get update -qq latest branch €O 2 jobs (V) 52 seconds, queued for 3 seconds
apt-get install -y python3 python3-flake8
script:
python3 -m flake8 calculator tests Pipeline Jobs 2 Tests 0
'‘kgrl-instance-standard" lint test
"gitlab/gitlab-runner:ubuntu"

@ Style Checking o @ Unittests o

I \v)_:i_:

apt—-get update -qq
- apt—-get install -y python3 python3-tk xvfb
- Xvfb :99 -screen 0 1024x768x24 2>/dev/null &
script:

- ./run_test.sh

More information can be found in https://docs.qitlab.com/ci/ &‘(lT

https://docs.gitlhttps://docs.gitlab.com/ci/_part_four.html

Hands-on

AIT

Hands-on

= Again work together in teams of two people

= Activate a simple GitLab CI on your private fork of the Scientific

Calculator project, running unit tests, check code coverage and
perform a flake 8 code style check

KIT

