
Collaborative
Software Design
Continuous Integration &
Continuous Deployment

Manuel Giffels (Manuel.Giffels@kit.edu)
KSETA Course — October 2025

mailto:Manuel.Giffels@kit.edu?subject=KSETA%20Course

Software Projects

Integration effort increases with:
▪ Number of packages
▪ Number of supported platforms
▪ Number of bugs
▪ Time since last integration

2

Package A Package B Package C Package D

Developer
Team 1

Developer
Team 2

Developer
Team 3

Developer
Team 4

Project

Recap: The ATLAS Code

3

ATLAS code

loc
(millions)

2 6

100

~420
developers

~140 ‘domains’
e.g. Tracking-Fitting

2400 individual packages

DB

(gcc 4.9) 3

correspondence

©Graeme Stewart

Impossible to integrate without automatism!

Continuous Integration (CI)

4

„Continuous Integration is a software development practice where
members of a team integrate their work frequently, usually each person
integrates at least daily - leading to multiple integrations per day. Each
integration is verified by an automated build (including test) to detect
integration errors as quickly as possible.“

Martin Fowler

Continuous Integration (CI)
Continuous Integration denotes the possibility to be always ready to
release the software to the customer, potentially after every commit

Every time new code is added to the project:
▪ Project is built and run on all target platforms
▪ Automated testing and codes style checking
▪ Ensure other components of the application (like database

schema) work properly
▪ The documentation is up-to-date and building
▪ Automated deployment or automated release if desired

5

Advantages
▪ Immediate detection of bugs and integration issues

▪ Immediate check of code style

▪ Simplifies code review process

▪ Ensures a working code base for developments

▪ Automated deployment and release (if desired)

▪ Public name and shame towards anyone who breaks the
project

6

CI does not mean that you do not need
to test your code before submitting!

Tools

7

The KSETA CI/CD Setup

Luckily the KIT GitLab has already a standard set of GitLab
runners enable to perform Continuous Integration

More about it can be found in the documentation
https://docs.gitlab.kit.edu/en/gitlab_runner/

8

https://docs.gitlab.kit.edu/en/gitlab_runner/

Enable Continuous Integration
To enable continuous integration in a repository, please do the
following:

▪ Add a .gitlab-ci.yml file to your repository

▪ Here is a simple example for the Scientific Calculator repository

9

Enable Continuous Integration

10

Enable Continuous Integration

10

Enable Continuous Integration

10

Enable Continuous Integration
More advanced example using different stages (style, test):

11 More information can be found in https://docs.gitlab.com/ci/

https://docs.gitlhttps://docs.gitlab.com/ci/_part_four.html

Questions?

Hands-on

Hands-on

▪ Again work together in teams of two people

▪ Activate a simple GitLab CI on your private fork of the Scientific
Calculator project, running unit tests, check code coverage and
perform a flake 8 code style check

14

