10 11 12
L S

B
\ »

» ?%}\ﬁ

Manuel.Giffels@kit.edu

mailto:Manuel.Giffels@kit.edu?subject=KSETA%20Course

Why is Documentation Essential? DEVELOPERS WRITING.CODE

4

Facilitates collaboration in multi-developer projects

A
o é Rr
Supports reproducibility o ,d(=

-

Reduces onboarding time for new contributors -

Enables long-term maintenance (often beyond your PhD)

Good code is only useful if people can understand and reuse it.

Types of Documentation

Readme

APl Documentation

Architecture
Documentation

Inline Comments
User Guide/Tutorials

Developer Guides

Overview, quick start, examples

Usage of functions/classes

System design, design
decisions

Clarify tricky code
How-to instructions

Helps onboarding

User, developers
Developers
Developers
Developers
End users

New Developers

KIT

Reasonable Structure of the Readme

= Project name and brief description
= Installation/setup instructions

= Quick start example

= Dependencies and requirements

= License and citation information

= Contribution guidelines

= Contact details

Think of the README as the
,front door” to your project

v+ README.md [3 2.49KiB

Scientific Calculator Project

This is a Python-based scientific calculator implemented using Tkinter. The project is structured so that arithmetic operations (+, -,
functions like sin, cos, tan, exp, log, etc., are intended to be implemented by students in a separate module.

Project Structure

calculator_project/

I— __init__.py

L— calcutator_t/
I— __init__.py
I— test_functions.py # Students
I— test_constants.py # Students
l— test_calculator.py
L test_gui.py

— run_test.sh # Script to run
— run_coverage.sh # Script to run
— setup.py
— README.md

Setup Instructions

1. Create a virtual environment:

python -m venv venv
source venv/bin/activate # Linux/mac0S
venv\Scripts\activate # Windows

— calculator/ # Core calculator code
l— __init__.py
I— core.py # Basic arithmetic functions
I— functions.py # Placeholder for scientific functions (students implement)
I— constants.py # Placeholder for scientific constants (students implement)
L gui.py # Tkinter GUI

— tests/ # Unit tests

add unit tests for scientific functions here
add unit tests for scientific constants here

all tests
coverage

Code | Preview | =~ [R &

*, /) work out of the box, while scientific

KIT

Inline Code Documentation
BEGINNER'S COMMENTING ON CODE LIKE
- Comment why, not what the code does) _’

@property
def _async_lock(self):
Create lock once tardis event loop is running.
To avoid got Future <Future pending> attached to a different loop exception STOP
if not self._lock:
self._lock = asyncio.Lock()
return self._locﬂ 4::

= Keep comments close to the relevant code /*THIS 1S A
STOP SIGN*/

= Avoid outdated comments — update as code evolves

= Use docstrings (Python) for functions and classes

@property
def configuration(self) -> AttributeDict:

Property to provide access to SiteAdapter specific configuration.
:return: returns the Site Adapter specific configuration
:rtype: AttributeDict

www.techindustan.com - Finest IT Services Company f W (9 /techindustan

return getattr(Configuration(), self.site_name)

APl Documentation Tools

v class ResourceStatus(Enum):

= Use tools for automatic generation

Status of the resource at the resource provider (batch system, cloud provider, etc.)

= Python — Sphinx

Running = 2
Stopped = 3
Deleted = 4

= C++ — Doxygen

v class SiteAdapter(metaclass=ABCMeta):

= Java — JavaDoc

= JS/TS — TypeDoc

Abstract base class defining the interface for SiteAdapters which provide
access to various Cloud APIs and batch systems in order to manage
opportunistic resources.

@property
def configuration(self) -> AttributeDict:

= Integrate with Cl to keep docs updated

Property to provide access to SiteAdapter specific configuration.
:return: returns the Site Adapter specific configuration
:rtype: AttributeDict

= Encourage clear, consistent docstring
formats (e.g. Sphinx format)

async def deploy_resource(
self, resource_attributes: AttributeDict
) —> AttributeDict:

= Utilization of Python Type Hints helps e
— no need to specify types in the

tparam resource_attributes: Contains describing attributes of the resource,

H defined in the :py:class: ~tardis.resources.drone.Drone’ implementation!
dOCStrI ng aS We” :type resource_attributes: AttributeDict
:return: Contains updated describing attributes of the resource.
:rtype: AttributeDict

raise NotImplementedError

KIT

https://www.sphinx-doc.org/en/master/
https://www.doxygen.nl/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://typedoc.org/

APl Documentation Tools

= Use tools for automatic generation
= Python — Sphinx

= C++ — Doxygen

= Java — JavaDoc

= JS/TS — TypeDoc

= Integrate with Cl to keep docs updated

= Encourage clear, consistent docstring
formats (e.g. Sphinx format)

= Utilization of Python Type Hints helps
— no need to specify types in the
docstring as well

A / tardis / tardis package / tardis.interfaces package / tardis.interfaces.siteadapter module View page source

tardis.interfaces.siteadapter module

class tardis.interfaces.siteadapter.ResourceStatus(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None) [source]
Bases: Enum

Status of the resource at the resource provider (batch system, cloud provider, etc.)

Booting=1

Deleted=4

Error=5

Running=2

Stopped=3

class tardis.interfaces.siteadapter.SiteAdapter [source]
Bases: object

Abstract base class defining the interface for SiteAdapters which provide access to various Cloud APIs and batch systems in order to manage opportunistic
resources.
property configuration: AttributeDict

Property to provide access to SiteAdapter specific configuration. :return: returns the Site Adapter specific configuration :rtype: AttributeDict

abstract async deploy_resource(resource_attributes: AttributeDict) = AttributeDict [source]

Abstract method to define the interface to deploy a new resource at a resource provider. :param resource_attributes: Contains describing attributes of the
resource, defined in the prone implementation! :type resource_attributes: AttributeDict :return: Contains updated describing attributes of the resource.

:rtype: AttributeDict
.|

KIT

https://www.sphinx-doc.org/en/master/
https://www.doxygen.nl/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://typedoc.org/

Setting Up Sphinx Documentation for a Python Project

Install Sphinx package
pip install sphinx

Create docs directory in scientific calculator project
mkdir docs && cd docs

Run sphinx—quickstart and fill the information
sphinx—quickstart

Install additional sphinx packages
pip install sphinx_rtd_theme sphinx—-autodoc-typehints

KIT

Setting Up Sphinx Documentation for a Python Project

= Open conf.py and update the
configuration

project = 'Scientific Calculator'
copyright = '2025, Manuel Giffels'
author = 'Manuel Giffels'

release = '0.1.0'

extensions = [
'sphinx.ext.autodoc"',
'sphinx.ext.napoleon’,
'sphinx_autodoc_typehints'

]

templates_path = ['_templates']
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'l

html_theme = 'sphinx_rtd_theme'
html_static_path = ['_static'l

KIT

Generate Sphinx Documentation for a Python Project

= Generate the APl documentation
sphinx—apidoc -0 source/api ../calculator

= Add Module Index to the table of content (index.rst)

D. toctree::

1 ! 9)
. maxdeptn: 2

| 10N: CLOonNtentcs.
;

A Scientific Calculator

@ / Scientific Calculator documentation View page source
earch docs

Scientific Calculator documentation

Add your content using reStructuredText syntax. See the reStructuredText documentation for

= Create the html output
make html

details.

Contents:

e Module Index

= Check output in a web browser
open _build/html/index.html

o calculator package

Next ©

© Copyright 2025, Manuel Giffels.

Built with Sphinx using a theme provided by Read the Docs.

_— e .

Architectural & Desigh Documentation

Describe the overall structure, key components,
dependencies, basic principles, etc.

Tools: Markdown, Unified Modelling Language
(UML), also generators available

Keep diagrams simple & version controlled

Document also major design decisions,
consequences and the reason for it — called ADR
(Architecture Decision Record)

Usually very reasonable on large projects with
many and changing contributors are involved

TARDIS - Core UML Class Diagram

tardis
plugin
decorators (© TARDISPlugin
@ Decorator ~factory: Factory
| -metrics: MetricsCollect
+wrap(obj): object [SstateSstorestatestore
+start(): void
+stop(): void
© £ moni{oring persistence
Factory I
~controller: Controll (© MetricsCollector M
-pool: Pool pp—
-adapter: Adapter +record(event: str): void tf:;’;glgtgé"md
+scale(): void)
[
delegates
oooooo ller \ adapters
tre @ Adapter

+create_resource()

| e(): Drone
+destroy_resource(d: Drone): void

+query_state(): str

~

+add_drone(d: Drone): void
+remove_drone(d: Drone): void
+get_active_drones(): List<Drone>

‘©0pen5tackAdapter‘ ‘@HTCondorAdapter‘ ‘@ SIurmAdapter‘
{ j t j t j

KIT

Documentation Best Practices

Treat documentation like code
= Use version control (Git)

= Use CI to build it

= Consider it in merge requests and the corresponding review
process

= Assign documentation tasks explicitly

Encourage everyone to contribute to the documentation — it is
not just one person’s job

Link documentation updates to feature changes in issues and
merge requests

AND THIS IS
JIM, OUR NEW
DEVELOPER

GREAT!
DOES HE
ALREADY KNOW
ANYTHING ABOUT
OUR SYSTEM?

I READ THE WHOLE
DOCUMENTATION

Common Pitfalls

= Assuming code is self-documenting
— even well-written code rarely conveys
design decisions, etc.

= Underestimating the lifetime of code Public static void main(String[] args) {
— Academic code often outlives the authors ‘

= Documentation of a project left to the end
— outdated quickly, not fun writing entire System
documentation at once

.out.println("welc
+PT1 Velcome to m raGvaml ;
€ To my program! What is your name? "):
' !

= QOverly detailed or too sparse documentation

— hard to maintain or simply useless Scanner s = new Scanner(Systen. in);
= Unclear audience targeting // an: | AND POINTLESS OR POORLY
— wrong level of detail, no benefits e nane = seenexetine O IWRTTTEN DOCUMENTATION CAN
\ BE WORSE THAN NONE AT ALL. |

= Only auto-generated docs ——
— Lack of context > KpV 202

KIT

Take Away Messages

Documentation is part of the project from the very beginning
Keep it clear, concise and evolving

Document the ,why“, and ,how"

Add examples and a minimal runnable demo

Use tools & workflows to reduce overhead

Use consistent vocabulary and structure

Good documentation means smoother collaboration and
reproducibility

50 WHEN WE DECIDE TO WRITE
DOCLMENTATION. WE. TAKE OLR
TIME AND DO IT WELL.

BY ALEC MCEACHRAN
© KPV 2021

KIT

Hands-on

AIT

Hands-on

= Again work together in teams of two people
= Set-up a simple APl documentation using Sphinx

= Add the build of the APl documentation to the GitLab CI/CD

KIT

