Manuel.Giffels@kit.edu

mailto:Manuel.Giffels@kit.edu?subject=KSETA%20Course

Recap: Agile Methods

KIT

Recap: Agile Methods

The Agile Development Methodology encourages the developer to be:
= Flexible — adapt to new requirements
= Fast — make changes to the implementation on a short timescale
= Courageous — change key parts of the software frequently

= Ready — release versions of the software very often

How to ensure that your code is actually doing what you want?

KIT

Recap: Agile Methods

The Agile Development Methodology encourages the developer to be:
= Flexible — adapt to new requirements
= Fast — make changes to the implementation on a short timescale
= Courageous — change key parts of the software frequently

= Ready — release versions of the software very often
How to ensure that your code is actually doing what you want?

Luckily: The Agile Toolbox provides also techniques to support the developers!

KIT

Recap: Agile Methods

The Agile Development Methodology encourages the developer to be:
= Flexible — adapt to new requirements
= Fast — make changes to the implementation on a short timescale
= Courageous — change key parts of the software frequently

= Ready — release versions of the software very often
How to ensure that your code is actually doing what you want?

Luckily: The Agile Toolbox provides also techniques to support the developers!

Important: Using these techniques is important for a successful Agile development process

Otherwise, Agile might results in
= un-controlled
= un-coordinated

= un-necessarily wasted time

KIT

How do you ensure your program ,works“?

KIT

How do you ensure your program ,works“?

First consideration: What does ,works®” mean?

Completes processing in the required amount of time
= Returns the correct result

Behaves appropriately in case of faulty input
= Does not crash

Stays inside of the allocated memory and disk space limits

KIT

How do you ensure your program ,works“?

First consideration: What does ,works®” mean?

Completes processing in the required amount of time
= Returns the correct result

Behaves appropriately in case of faulty input
= Does not crash

Stays inside of the allocated memory and disk space limits

At which stage are these checks necessary?
= During development
Before a release

= When changing compiler/interpreter, runtime or external libraries

KIT

How do you ensure your program ,works“?

First consideration: What does ,works®” mean?

Completes processing in the required amount of time
= Returns the correct result

Behaves appropriately in case of faulty input
= Does not crash

Stays inside of the allocated memory and disk space limits

At which stage are these checks necessary?
= During development
Before a release

= When changing compiler/interpreter, runtime or external libraries

Question: How do you ensure these points during your development
process?

KIT

Test Scopes

= Unittest

= Test part if the program

= Check isolate behaviour, pinpoint defects in the
software

= Integration Test
= Test interaction with programs

= Check outwards compatibility, ensure basic usability

= System Test

= Test group of programs

= Check requirements are met

KIT

Unit Testing

,Unit tests are the tests that you write to verify the operation of your code. These
tests aren’t at the level of features. They are at the level of methods and functions.”

Jeff Younker, Foundations of Agile Python Development, Apress, 2008
Unit tests are:

= Automated

« Compact and test the smallest possible unit of functionality
(a class, as method)
in contrast to: Integration tests to validate the interplay
between components

= Fast. The whole set of unit tests should complete in the
order of seconds

- Part of the code base and available to every developer
working on the project

KIT

Unit Test Frameworks

Unit test frameworks exist for every language and all offer a very similar set of
features:

= A way to express test cases with a number of tests ...
= ... and group them together in so called test suites

= Method/function/macros to check for correct output of the tested source
code

= Checks for error handling and exceptions
= Test runner: executing all or a sub-set of unit tests and report the result

Available frameworks:
= Python: unittest package (part of the python standard library), pytest

= (C++: googletest, Boost. Test
= Java: JUnit

KIT

Anatomy of a Unittest

= What is a suitable ,,unit? (a, b):
. . 11(isinst (x, (int, float))
- Self-contained part of the code, e.g. a function e
ypeError(
= Expected/documented behaviour
ZeroDivisionError(
= Units may consist of other units a/b

= What would the users do? Unexpected input, etc.

= \What is s suitable test? (unittest.TestCase):
: (self):
- Expected input/start — output/stop self.assertEqual(divide(10, 2), 5)
= Arbitrary selection of common cases (self):
= Al edge cases you can think of self.assertRaises(ZeroDivisionError):
, , i divide(1, 0)
= Relation to itself or other units (self):
= Sample of all guaranteed behaviour (includes self.assertRaises(TypeError):

reliable failure!) divide("10", 2)

KIT

Common Unit test Pitfalls

= Test behaviour, not implementation

= Write tests that check what the code does, not how it does it internally

= Only testing the ,happy path®

= Missing edge cases, invalid input or exceptions

IT'S ALMOST
- Test depend on each other O EROKEN TESTS

= Test should be independent and runnable in any order

= Be exhaustive but descriptive

= Write a lot test cases to, but give them a reasonable naming

= Failure case must be identifiable

= It should be immediately clear what went wrong and why

= Track expected failures 50 SHADES OF GREEN

= Sometimes a test is supposed to fail, document it and not just ignore it.

KIT

Python unit test example

The task: Implement a class to compute the average over multiple values:

class Average:
def __init__ (self):
self. _values = []

add_value(self, value):

self._values.append(value)

compute(self):
return sum(self._values)/len(self._values)

Question: What would you like to test in this implementation?

KIT

Python unit test example

A possible starting set of unit tests:

from unittest import TestCase
from average import Average

class TestAverage(TestCase):
def setUp(self):
self.average = Average()

def test_zero_entries(self):
with self.assertRaises(NoEntries):
self.average.compute()

def test_one_entry(self):
self.average.add_value()
self.assertEqual(, self.average.compute())

def test_three_entries(self):
for value in (, — , I E
self.average.add_value(value)
self.assertAlmostEqual(:, average,compute())

KIT

What to do in more complex scenarios?

»Yeah, bit | cannot unit test my code, because | use a

You're nearly there Mr

[database, network, put your favourite external component (presicent °“'9°'e“)

here]! .

Not really true, in these cases unit testing may become a
bit more challenging, but is still possible and important!

= External components can be hidden behind interface classes
= Certain classes might only work in conjunction with others

= Some classes may need complex input data to execute their
code

The python unittest.mock library can help to replace any
python method called in your class/function by test code.

Just like that, You're all '}

_done. Now for testing! /

-/ Noneed to
| get that thing out in
production bro!

7 7 ¥, | must have
forgotten an if block

CommitStrip.com

KIT

Test Coverage

The python coverage tool can analyze which part of the code base

is actually executed aka covered by the unit test.
To execute and analyze the unit tests:

= To install the coverage package
python3 -m pip install coverage

= To execute and analyze the unit tests
python3 -m coverage run ./my_tests.py

= To create a text report
python3 -m coverage report

= To create a html report
python3 —-m coverage html

The test coverage can be a quality criteria of a software
project and a test coverage of 100% is desirable.

"We need more unit tests.

100% coverage."

N\anage‘
Dave

public class PropertyBag

/luntested
public int Id { get;set;}
}

/:l-;él—:‘-% a
Dave remembered to the minute the
[Test] instant he stopped caring.
public void Id_Getter_Returns_Id() —
var sut = new PropertyBag();
sut.ld = 42;
var result = sut.ld;
?
Assert.AreEqual(result, 42)
} ———

S fglonrlemfieff e

KIT

Coverage Report

giffler @ MacBook-Pro2023 « » kseta-workshops > kseta-csd-2025 > scientific-calculator

Ran 27 tests in 1.215s

calculator/__init__.py
calculator/constants.py
calculator/core.py
calculator/functions.py
calculator/gui.py
calculator/run_calculator.py

KIT

Coverage Report

Coverage report: 91%

Files | Functions Classes
coverage.py v/.10.6, created at 2025-10-13 14:38 +0200

File statements missing excluded coverage
100%

50%
100%

calculator/__init__.py 0 0
calculator/constants.py 2 1

calculator/core.py 18 0

100%
100%
91%

calculator/gui.py

calculator/run_calculator.py 6

0

0

0
calculator/functions.py 31 0 52%

0

0

0

Total 179

coverage.py v7.10.6, created at 2025-10-13 14:38 +0200

KIT

Test Driven Development

Test Driven Development is a programming technique in which the
requirement on a piece of code is expressed with a unit test, before
the code is written

Typical workflow:

1. Write a unit test for the feature you are going to implement
2. Write the most minimalistic code to pass the unit test

3. Run unit test

4. Goto 1, if unit test succeeds and Goto 2, if unit test fails

Advantages of Test Driven Development:

= Developer has to think about the interfaces and behaviour
beforehand

= Code is written to be test-able

= Writing unit tests is part of the regular development workflow

KIT

ACTUAL CoDE UNIT TESTS

Test Driven Development

Test Driven Development is a programming technique in which the
requirement on a piece of code is expressed with a unit test, before
the code is written

Typical workflow:
1. Write a unit test for the feature you are going to implement
2. Write the most minimalistic code to pass the unit test

3. Run unit test

® THETENKINSCOMIC

4. Goto 1, if unit test succeeds and Goto 2, if unit test fails

Advantages of Test Driven Development:

= Developer has to think about the interfaces and behaviour
beforehand

= Code is written to be test-able

- Writing unit tests is part of the regular development workflow 1€sts should be roughly the same order of
magnitude in LOC as the code they test.

KIT

Test Driven Development

15

TEST-FIRST DEVELOPMENT REFACTORING

The test succeeds.

Check if

#4 all the tests
succeed.

The test fails.

The test
succeeds.

Some tests
fail.

The test fails. . _
« The code quality

satisfies.
Iterate
focus

Alignment of the design
with known needs

focus
Completion of the contract
as defined by the test

KIT

Hands-on

AIT

Hands-on

= Please, form teams of two people for the next exercise

= Use Test-Driven Development (TDD) to implement as many missing
features of the Scientific Calculator as possible, based on the user

stories, in your private fork.

Important: Use one feature branch for one user story!

KIT

