
Collaborative
Software Design
Unit Test & Test Driven
Development

Manuel Giffels (Manuel.Giffels@kit.edu)
KSETA Course — October 2025

mailto:Manuel.Giffels@kit.edu?subject=KSETA%20Course

Recap: Agile Methods

2

Recap: Agile Methods
The Agile Development Methodology encourages the developer to be:

▪ Flexible — adapt to new requirements

▪ Fast — make changes to the implementation on a short timescale

▪ Courageous — change key parts of the software frequently

▪ Ready — release versions of the software very often

How to ensure that your code is actually doing what you want?

2

Recap: Agile Methods
The Agile Development Methodology encourages the developer to be:

▪ Flexible — adapt to new requirements

▪ Fast — make changes to the implementation on a short timescale

▪ Courageous — change key parts of the software frequently

▪ Ready — release versions of the software very often

How to ensure that your code is actually doing what you want?

Luckily: The Agile Toolbox provides also techniques to support the developers!

2

Recap: Agile Methods
The Agile Development Methodology encourages the developer to be:

▪ Flexible — adapt to new requirements

▪ Fast — make changes to the implementation on a short timescale

▪ Courageous — change key parts of the software frequently

▪ Ready — release versions of the software very often

How to ensure that your code is actually doing what you want?

Luckily: The Agile Toolbox provides also techniques to support the developers!
Important: Using these techniques is important for a successful Agile development process

Otherwise, Agile might results in

▪ un-controlled

▪ un-coordinated

▪ un-necessarily wasted time

2

How do you ensure your program „works“?

3

How do you ensure your program „works“?
First consideration: What does „works“ mean?
▪ Completes processing in the required amount of time
▪ Returns the correct result
▪ Behaves appropriately in case of faulty input
▪ Does not crash
▪ Stays inside of the allocated memory and disk space limits

3

How do you ensure your program „works“?
First consideration: What does „works“ mean?
▪ Completes processing in the required amount of time
▪ Returns the correct result
▪ Behaves appropriately in case of faulty input
▪ Does not crash
▪ Stays inside of the allocated memory and disk space limits

At which stage are these checks necessary?
▪ During development
▪ Before a release
▪ When changing compiler/interpreter, runtime or external libraries

3

How do you ensure your program „works“?
First consideration: What does „works“ mean?
▪ Completes processing in the required amount of time
▪ Returns the correct result
▪ Behaves appropriately in case of faulty input
▪ Does not crash
▪ Stays inside of the allocated memory and disk space limits

At which stage are these checks necessary?
▪ During development
▪ Before a release
▪ When changing compiler/interpreter, runtime or external libraries

Question: How do you ensure these points during your development
process?

3

Test Scopes

▪ Unittest

▪ Test part if the program

▪ Check isolate behaviour, pinpoint defects in the
software

▪ Integration Test

▪ Test interaction with programs

▪ Check outwards compatibility, ensure basic usability

▪ System Test

▪ Test group of programs

▪ Check requirements are met

4

System

Program Program

Program Program

Unit

Unit Unit

In
te

gr
at

io
n

Integration

Unit Testing

Unit tests are:

▪ Automated

▪ Compact and test the smallest possible unit of functionality
(a class, as method)
in contrast to: Integration tests to validate the interplay
between components

▪ Fast. The whole set of unit tests should complete in the
order of seconds

▪ Part of the code base and available to every developer
working on the project

5

„Unit tests are the tests that you write to verify the operation of your code. These
tests aren’t at the level of features. They are at the level of methods and functions.“

Jeff Younker, Foundations of Agile Python Development, Apress, 2008

Unit Test Frameworks
Unit test frameworks exist for every language and all offer a very similar set of
features:
▪ A way to express test cases with a number of tests …
▪ … and group them together in so called test suites
▪ Method/function/macros to check for correct output of the tested source

code
▪ Checks for error handling and exceptions
▪ Test runner: executing all or a sub-set of unit tests and report the result

Available frameworks:
▪ Python: unittest package (part of the python standard library), pytest
▪ C++: googletest, Boost.Test
▪ Java: JUnit

6

Anatomy of a Unittest
▪ What is a suitable „unit“?
▪ Self-contained part of the code, e.g. a function
▪ Expected/documented behaviour
▪ Units may consist of other units
▪ What would the users do? Unexpected input, etc.

▪ What is s suitable test?
▪ Expected input/start → output/stop

▪ Arbitrary selection of common cases
▪ All edge cases you can think of

▪ Relation to itself or other units
▪ Sample of all guaranteed behaviour (includes

reliable failure!)

7

Common Unit test Pitfalls
▪ Test behaviour, not implementation

▪ Write tests that check what the code does, not how it does it internally

▪ Only testing the „happy path“
▪ Missing edge cases, invalid input or exceptions

▪ Test depend on each other
▪ Test should be independent and runnable in any order

▪ Be exhaustive but descriptive
▪ Write a lot test cases to, but give them a reasonable naming

▪ Failure case must be identifiable
▪ It should be immediately clear what went wrong and why

▪ Track expected failures
▪ Sometimes a test is supposed to fail, document it and not just ignore it.

8

Python unit test example

The task: Implement a class to compute the average over multiple values:

Question: What would you like to test in this implementation?

9

Python unit test example

A possible starting set of unit tests:

10

What to do in more complex scenarios?

„Yeah, bit I cannot unit test my code, because I use a
[database, network, put your favourite external component
here]!

Not really true, in these cases unit testing may become a
bit more challenging, but is still possible and important!

▪ External components can be hidden behind interface classes

▪ Certain classes might only work in conjunction with others

▪ Some classes may need complex input data to execute their
code

The python unittest.mock library can help to replace any
python method called in your class/function by test code.

11

Test Coverage
The python coverage tool can analyze which part of the code base
is actually executed aka covered by the unit test.

To execute and analyze the unit tests:

▪ To install the coverage package
python3 -m pip install coverage

▪ To execute and analyze the unit tests
python3 -m coverage run ./my_tests.py

▪ To create a text report
python3 -m coverage report

▪ To create a html report
python3 -m coverage html

The test coverage can be a quality criteria of a software
project and a test coverage of 100% is desirable.

12

Coverage Report

13

Coverage Report

13

Test Driven Development
Test Driven Development is a programming technique in which the
requirement on a piece of code is expressed with a unit test, before
the code is written

Typical workflow:

1. Write a unit test for the feature you are going to implement

2. Write the most minimalistic code to pass the unit test

3. Run unit test

4. Goto 1, if unit test succeeds and Goto 2, if unit test fails

Advantages of Test Driven Development:
▪ Developer has to think about the interfaces and behaviour

beforehand
▪ Code is written to be test-able
▪ Writing unit tests is part of the regular development workflow

14

Test Driven Development
Test Driven Development is a programming technique in which the
requirement on a piece of code is expressed with a unit test, before
the code is written

Typical workflow:

1. Write a unit test for the feature you are going to implement

2. Write the most minimalistic code to pass the unit test

3. Run unit test

4. Goto 1, if unit test succeeds and Goto 2, if unit test fails

Advantages of Test Driven Development:
▪ Developer has to think about the interfaces and behaviour

beforehand
▪ Code is written to be test-able
▪ Writing unit tests is part of the regular development workflow

14

Tests should be roughly the same order of
magnitude in LOC as the code they test.

Test Driven Development

15

Questions?

Hands-on

Hands-on

▪ Please, form teams of two people for the next exercise

▪ Use Test-Driven Development (TDD) to implement as many missing
features of the Scientific Calculator as possible, based on the user
stories, in your private fork.

Important: Use one feature branch for one user story!

18

