

Optimisation of a detector setup for Helium-CT

Motivation - medical therapy and imaging

- radiotherapy and radiographic imaging
- diagnosis and treatment of cancerous diseases
- compromise between effective radiation dose and minimal damage to healthy tissue

CT for treatment planning Heidelberg University Hospital

Advantages of Helium in Ion-Beam Therapy

Dose relative to depth in human tissue Br J Radiol. 2020 Nov; 93(1116): 20200247

- Ion-Beam Therapy enables treatment with highly conformal dose distribution
- Helium as compromise between Hydrogen and Carbon
- more massive than protons
 - → steep Bragg Peak
 - → less Coulomb Scattering
- less massive than carbon
 - → smaller Fragmentation Tail (secondary radiation)

Medical Ion-Beam-Radiotherapy

DKFZ/HIT Heidelberg

Ion Therapy

Heavy Ion Therapy at Heidelberg Ion Beam Therapy Center with H, He and C

Imaging

measuring water-equivalentthickness with thin detectors [Knobloch,MedPhys 49,pp 5347 2022]

HIT facility, Heidelberg www.klinikum.uni-heidelberg.de (03.2025)

He-Radiography: current setup at DKFZ

Margareta Metzner et al 2024 Phys. Med. Biol. 69 055002, Fig 2

A,B: tracking detectors C: energy, rear tracking detector D: phantom E: copper degrader F: hardware unit

Detectors

- hybrid semiconductor pixel detectors
- signal formation in depleted layer

based on CERN Courier Volume 64, Number 5, September/October 2024

Detectors

- 256x256 px², 14x14 mm², pitch 55 μ m
- Tracking mode: time-of-arrival
- Energy mode: time-over-threshold [Knobloch, MedPhys 49,pp 5347, 2022]

simulation: not using these outputs

information on deposited charge per pixel

A. Natochii, PRAE Workshop **2018**, TimePix

Simulation with Allpix²

- Allpix Squared Semiconductor Detector Monte Carlo Simulation Framework, developed at CERN
- simulating physical processes with GEANT4
- grounded in real measurement setups from DKFZ
- geometry of setup, detector type, source
- different models to simulate processes inside sensor

Allpix setup: parameters

sensor thickness: 300 µm

depletion depth: 210 µm

reverse bias voltage: -7.4 V

chip thickness: 100 µm

- digitization: charge sensitive amplifier model used for energy sensor
- degrader: 5.45 mm of copper
- phantom: varying length of PMMA (poly-methyl metacrylate, "plexiglass")

Measurement methods

simulation

- distinct events
- single particle from source
- measured quantity: deposited charges/number of created e-h pairs
- conversion into deposited energy: E = 3.64 eV per charge

experiment

- measuring over time intervall
- high intensity particle flux
- measured quantity: time-overthreshold
- conversion via calibration measurement with known radioactive sources

Overview of experimental data

- datasets of deposited energy
- two different beam energies
- 4 different phantom thicknesses per beam energy

Overview of experimental data

- 179 mm PMMA phantom
- ■825.4 MeV beam energy
- approximately gaussian peak

Overview of experimental data

- datasets of deposited energy
- two different beam energies
- 4 different phantom thicknesses per beam energy

Simulation – comparison with experimental results

- example at 825.4 MeV
- simulating phantom with 179 mm of PMMA

Results – comparison between simulation and experiment

- simulation overestimates deposited energy
- higher dispersion of deposited energy at larger thickness

Study on simulation parameters

- example: degrader thickness
- varying given value by the uncertainty $(\pm \sigma)$
- rough estimate of probable upper and lower bounds on simulated energy

Revised comparison with experimental results

- wide margin between upper and lower bounds
- no accurate representation of experimental data achieved
- physical simulation models rely on precisely known parameters
 - → missing information

Imaging – visualisation in Allpix²

Imaging

- 2-D radiography
- generate image from 2D per pixel energy deposition

Imaging – method

- methods used from [Gehrke, PhysMedBiol 63, 2018]
- path through phantom approximated through cubic spline path [Fekete, PhysMedBiol 60, 2015]
- path is calculated with estimated parameters from the WET and water-equivalent-path-length at the specified beam energy

imaging - method

- 3-D path conversion to voxels
- mean energy value calculated for each voxel
- integration along z-axis for 2D picture

Conversion of energy into WET

- **WET**: water-equivalent-thickness
- length of water needed to achieve the same effect
- measure of radiological thickness independent of incident energy
- repeated simulations with PMMA phantoms of known WET

Imaging - results

■ 1 mm gap at 825.4 and 800 MeV beam energy

Imaging - results

use error function as fit function

$$\operatorname{erf}(x) = a \cdot \frac{2}{\sqrt{\pi}} \int_0^{(x-z)f} e^{-t^2} dt + b$$

Imaging – contrast to noise ratio

two equal areas in different regions

$$ext{CNR} = rac{|\langle S_a
angle - \langle S_a
angle|}{\sqrt{\sigma_a^2 + \sigma_b^2}}$$

- $CNR_{825} = 1.618$
- $CNR_{800} = 3.923$

Optimising beam energy

Imaging – insufficient energy

- energy of particles too small
- blocked in region of higher WET

Summary

- real world setup has been successfully recreated in Allpix-Squared
- experimental results could not be reproduced with satisfying accuracy
- insufficient data on setup, calibration and depletion region
- 1 mm air gap in PMMA phantom imaged in radiograph
- WET value of 1.2 +/- 0.5 mm, agrees with expected value of 1.16 mm
- improvement of CNR by changing beam energy
- future steps: 3D (CT), efficient simulation, different quantities to optimise, optimisation via Machine Learning

Thanks!

... to Ulrich and Alexander,

... to Lorenzo and Jan,

... to CN 317,

... to ETP for all your support and cake.

Addendum

DKFZ/HIT Heidelberg

- Secondary Radiation: In-ViMo Project [6], Carbon-Ions [5]
- Helium-CT: Imaging, measuring WET [1], Energy Painting [4]

CNAO Italy

He-lon facility planned [2]

NIRS: HIMAC Japan

- HIMAC: Heavy Ion Medical Accelerator, Carbon-Radiotherapy
- multi-lon (He,C,O) radiotherapy planned [3]

MedAustron Austria

He-lon facility planned [2]

Imaging – method

- methods used from [Gehrke, PhysMedBiol 63, 2018]
- path through phantom approximated through cubic spline path [Fekete, PhysMedBiol 60, 2015]
- path is calculated with estimated parameters from the WET and water-equivalent-path-length at the specified beam energy

$$egin{aligned} r(t) &= (2t^3 - 3t^2 + 1) \cdot ec{p_0} + (t^3 - 2t^2 + t) \cdot \Lambda_0 \cdot ec{d_0} + (-2t^3 + 3t^2) \cdot \Lambda_1 \cdot ec{d_1} \ ec{d_{0,1}} &= \hat{d_{0,1}} \left| ec{p_1} - ec{p_0}
ight| \end{aligned}$$

Imaging – different beam energies

- choosing optimal energy
- maximum difference
- still at rising edge of bragg peak

cluster energy histograms for different beam energy

Machine Learning

- established one or multiple parameters and quantities to optimise
- ML: optimisation through gradient descent
 - difficult with simulation
- pipeline with Surrogate Model (differentiable) → Jan Kieseler

