

Using GAN for fast event generation

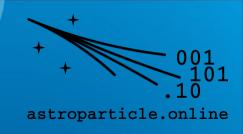
A.Kryukov*
SINP MSU

The 3-d Int. workshop "Data Life Cycle-2019" Irkutsk, 03-04.04.2019

Supported by RSF grants No.18-41-06003

*E-mail: kryukov@theory.sinp.msu.ru

The problem

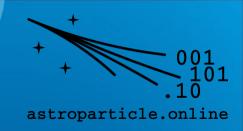


 Develop fast event generator for astroparticle physics application aria, for example IACT.

Mathematically:

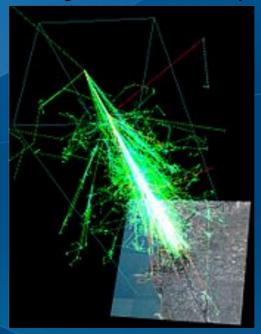
- Let us x is a random variable with probability density P(x)
- How to generate sample $\{x_1, x_2,\}$ that has the same probability density?

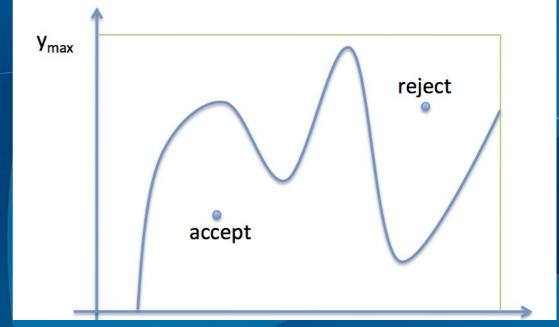
MC generators



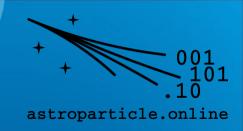
Algorithm von Neumann

A simple method for generating random points with distribution P(x) was deduced by von Neumann. The idea is extremely simple. In one dimension, if you have a function with known everywhere on a specific domain (i.e. $[x_{min}, x_{max}]$) and with a known supremum M over that domain, you can sample from it as follows:

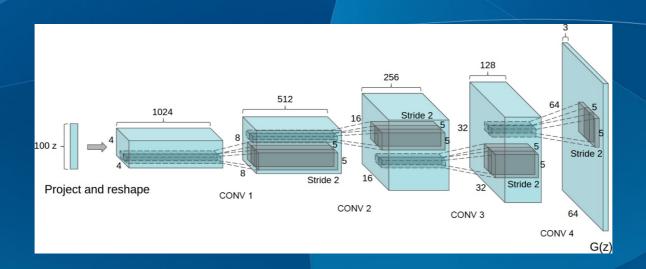




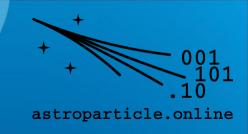
Sample Training



- Sampling procedure
 - Traditionally this is a neural network

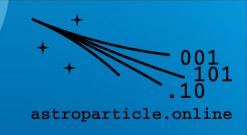


Generator vs probability function

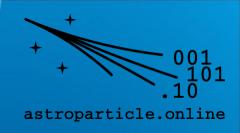


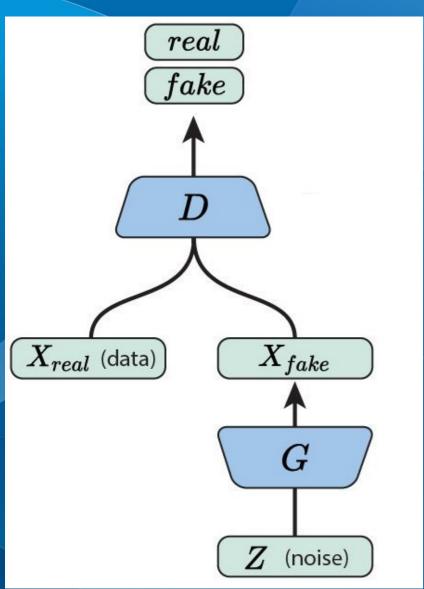
- A probability density function P(x) is hard:
 - normalization is the main issue;
 - sampling might be computationally costly (usually, long MC);
 - CORSIKA: hours and days of works per shower.
- Learning a generator is easier:
 - x = G(z) where:
 - G a parameterized deterministic function;
 - z predetermined and easy to sample.

Generative adversarial networks



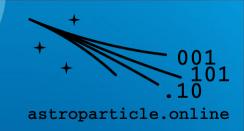
Generative adversarial networks





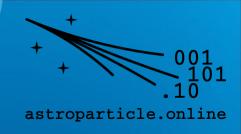
- The discriminator tried to distinguish between fake (generated) and real data
- Input data either generated or from the real dataset
- The generator turns the input noise into fake data to try and fool discriminator
- Input noise

Adversarial training



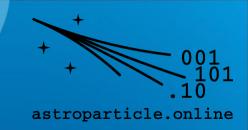
- Generator is trained to maximize goodness of produced samples.
- GAN defines goodness of a generator via a classifier D :
 - learns to discriminate X against X ';
 - if quality is close to a random guess:
 X ' is similar to X;
 - if quality is high: G should be improved.

Discriminator

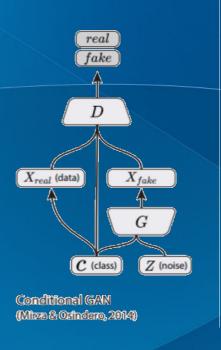


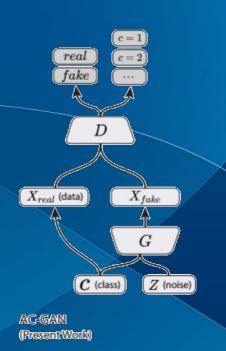
- Usually called adversary or critic
- Traditionally, also a neural network
- Discriminator defines goodness of generated samples:
 - rich set of methods for classification;
 - easy to identify important properties of good generator and use inside discriminator;
 - produces interpretable quality metric.

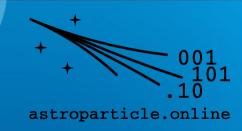
Many GAN flavors

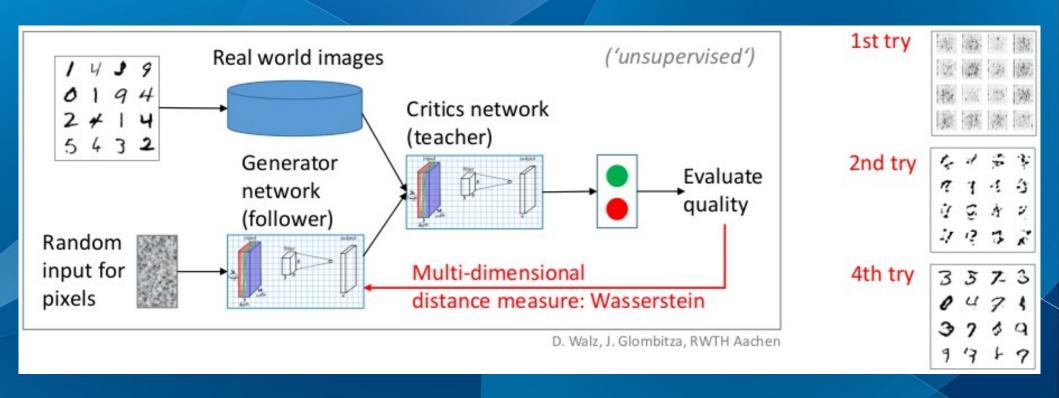


- Original GAN was based on MLP in 2014
- Deep Convolutional GAN in 2015
- Conditional GAN
 - Extended to learn a parameterized generator p model (x | θ);
 - Useful to obtain a single generator object for all θ configurations
 - Interpolate between distribution
- Auxiliary Classifer GAN
 - D can assign a class to the image

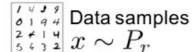


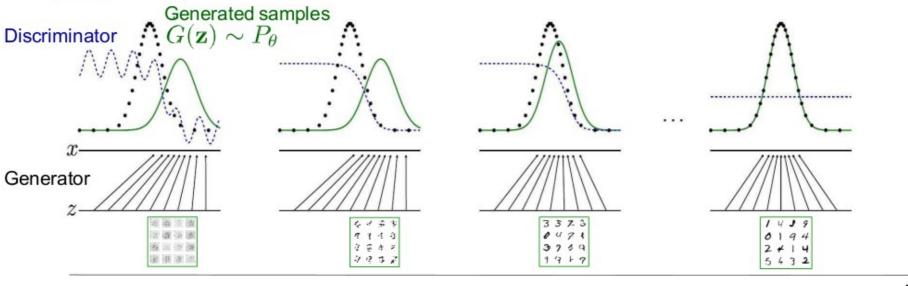






Optimal Evolution of GAN Training





Epochs

Gradient of discriminator guides generator

→ G generates samples which are more likely identified as data

Martin Erdmann, RWTH Aachen

13

Wasserstein distance

Also known as Earth Mover's distance (EMD)

Ensure Expectation Travel smallest cost value distance

$$\mathcal{D}_W(P_r||P_{\theta}) = \inf_{\gamma \in \Pi(P_r, P_{\theta})} \mathbb{E}_{(x,y) \sim \gamma}[||x - y||]$$

Transportation plans

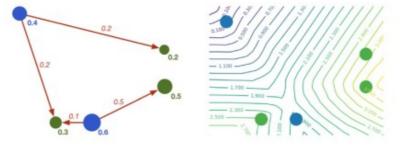
Describes **minimal cost** to move distribution P_{θ} on P_{r} and vice versa (Cost: mass *distance)

Trick to calculate: Kantorovich-Rubinstein duality

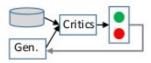
$$D_W \rightarrow \min_{C \in Lip1} |E_{r^*Pr} C(r) - |E_{q^*Pq} C(q)$$

Optimal transport plan:

blue dots=earth heaps
green dots=target distribution
red arrows=optimal transport plan
numbers=amount of mass moved
Wasserstein distance=sum over all
arrow weights multiplied by path length



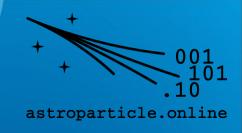
Critics: Wasserstein distance =C(green) - C(blue) Gradients of C parallel to optimal transport paths (red arrows), perpendicular to contour lines.



Martin Erdmann, RWTH Aachen

14

Conclusion



- It is very important to implement a fast generator for shower simulation
 - Corsika base solution require from hours to few days per one event.
- GAN nets are natural candidates to speedup simulation
 - Rely on the possibility to interpret "events" as "images"
 - First GANs applications to cosmic ray case looks very promising
- 3d GAN is the initial step of a wider plan to do DL based fast simulation within the GeantV project