Provenance Metadata Management in Distributed Storages Using the Hyperledger Blockchain Platform

A. Demichev, A. Kryukov

and

N. Prikhod'ko

SINP MSU

Novgorod State University

Supported by RSF grant No. 18-11-00075

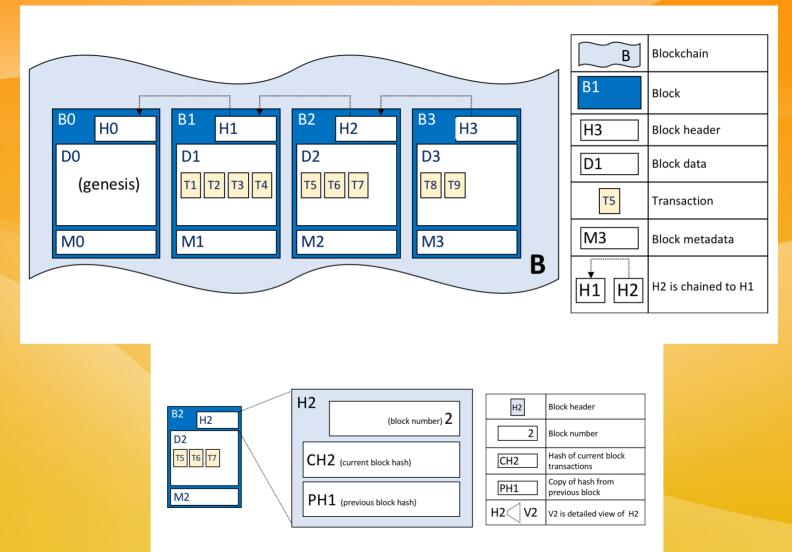
Provenance Metadata (PMD)

- Metadata describing data, provide context and are vital for accurate interpretation and use of data
- One of the most important types of metadata is provenance metadata (PMD)
 - tracking the stages at which data were obtained
 - ensuring their correct storage, reproduction and interpreting
 - ⇒ ensures the correctness of scientific results obtained on the basis of data
- The need for PMD is especially essential when large volume (big) data are jointly processed by several research teams

DLC-2019, Apr 2-7, 2019 A.Demichev, A.Kryukov & N.Prikhod'ko, SINP MSU & NovSU

Types of storages: extremal cases

- Centralized
 - problems:
 - very expensive \Rightarrow funding ?
 - planning in advance the necessary storage capacity
- P2P-storage with special mechanisms of coding, fragmentation and distribution
 - problems:
 - to ensure a stable pool of resource providers,
 - before such a P2P-based storage can work stably, it requires significant technical, organizational and time costs in the absence of a result guarantee


Types of storages: intermediate solution

- organizations participating in a large project integrate their local storage resources into a unified distributed pool
- may be particularly advantageous if a project brings together a number of organizationally unrelated participants
- the case corresponds to the baseline usecase being under discussion at this Workshop
- ⇒ dynamically changing distributed environment

PMD MS Construction: Distributed Solution

- distributed environment ⇒ distributed registry for PMD
- we suggested to use the blockchain technology which provides
 - that no records were inserted into the registry in hindsight
 - no entries were changed in the registry
 - the registry has never been damaged or branched
 - monitoring and restoring the complete history of data processing and analysis

Blockchain structure

DLC-2019, Apr 2-7, 2019

A.Demichev, A.Kryukov & N.Prikhod'ko, SINP MSU & NovSU

PMD MS Construction: Which Blockchain (1/2)

- type of the blockchains
 - permissionless blockchains, in which there are no restrictions on the transaction handlers
 - permissioned blockchains, in which transaction processing is performed by specified entities
- permissionless:
 - algorithms are based on
 - Proof-of-Work highly resource-consuming, probability of reaching a consensus, which grows with time elapsing, ...
 - Proof-of-Stake Nothing-at-Stake problem,...
 - suitable for open (public) networks of participants (Bitcoin, etc.)

PMD Projects Based on Permissionless Blockchains

- ProvChain, SmartProvenance: intended for a cloud storage
 - no DDS, no different administrative domains, no real consensus among the potentially conflicting parties
- Storj, Sia: intended for a P2P network of public storage resources
 - public blockchain mainly for providing mutual settlements between suppliers and consumers of (P2P) resources
 - very restricted PMD facilities

PMD MS Construction: Which Blockchain (2/2)

- Permissioned:
 - there is a fixed number of trusted transaction/blockchain handlers
 - the handlers must come to a consensus about the content and the order of the recorded transactions
 - distributed consensus algorithm should be involved
 - form a more controlled and predictable environment than permissionless blockchains
 - suitable for networks with naturally existing trusted parties
 - our case: storage providers, representatives of real organizations participating in the project,...

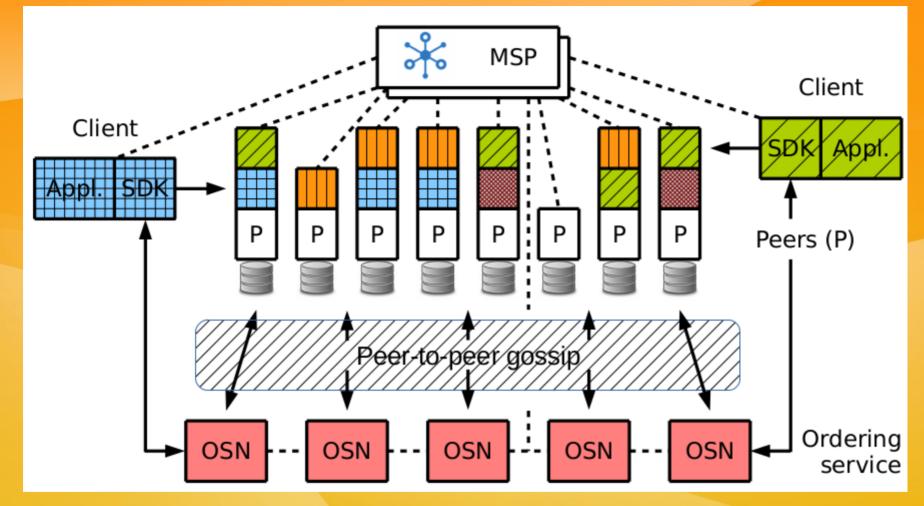
System state

- The state of the entire distributed storage = aggregated state of the set of files stored in it with their states at the moment
- The state of a data file is determined by PMD:
 - global ID + attributes, including:
 - local file name in a storage: fileName;
 - storage identifier: storageID;
 - creator identifier: creatorID;
 - owner identifier: ownerID
 - type: type=primary/secondary/replica

DLC-2019, Apr 2-7, 2019

Basic operations ⇒ transactions

- new file upload
- file download
- file deletion
- file copy
- copying a file to another repository
- transferring a file to another repository
 - each active transaction ⇒ update of some state attributes
 - for example, after the transaction "file download" the values of the keys change: "number of file downloads" and "users who downloaded the file".


DLC-2019, Apr 2-7, 2019

A.Demichev, A.Kryukov & N.Prikhod'ko, SINP MSU & NovSU

HyperLedger Fabric (1/2)

- Analysis of existing platforms shows that the formulated problems most naturally can be solved on the basis of the
 - Hyperledger Fabric blockchain platform (HLF; www.hyperledger.org)
 - together with Hyperledger Composer (HLC; hyperledger.github.io/composer) = set of tools for simplified use of blockchains
- permissioned blockchains
 - transactions are processed by a certain list of trusted network members

HyperLedger Fabric (2/2)

From: E. Androulaki et al. "Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains," in Proc 13th EuroSys Conf. 2018DLC-2019, Apr 2-7, 2019A.Demichev, A.Kryukov & N.Prikhod'ko, SINP MSU & NovSU

Business process within (HLF&C)-platform

- Assets are tangible or intellectual resources, records of which are kept in registers
 - in our case, the assets are data files; their properties (attributes) are provenance metadata
- Participants are members of the business network.
 - they can own assets and make transaction requests
 - can have any properties if necessary
- Transaction is the mechanism of interaction of participants with assets
- Events: messages can be sent by transaction processors to inform external components of changes in the blockchain

HyperLedger Fabric → ProvHL (1/4)

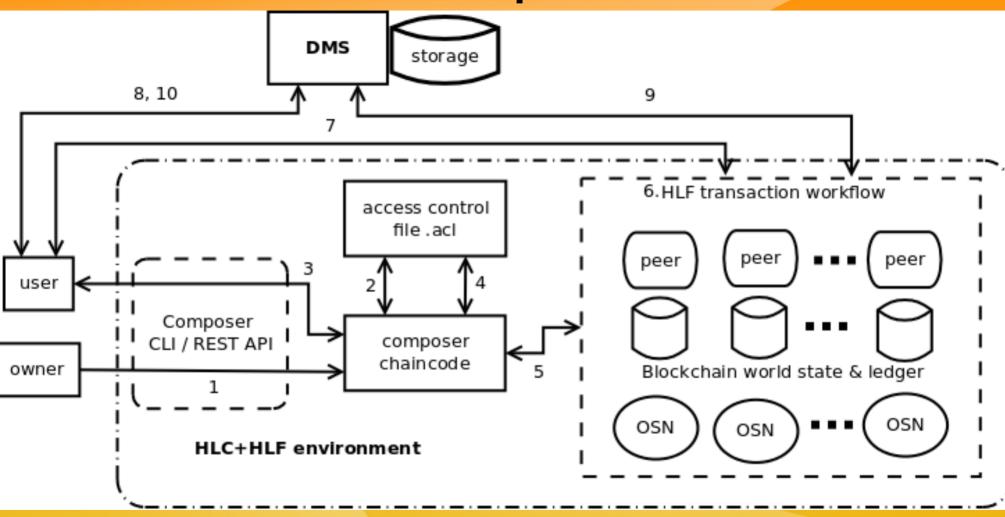
- ProvHL = Provenance HyperLedger
- operation of smart contracts (chaincodes)
 - adaptation of HLF for the business process of sharing storage resources
- provides a record of transactions & advanced query tools
- advanced means for managing access rights
 - access rights can be managed by network members within their competence

DLC-2019, Apr 2-7, 2019

HyperLedger Fabric \rightarrow **ProvHL** (2/4)

- Participants
 - Person
 - StorageProvider
- Assets
 - File
 - Storage
 - Operation
 - Group

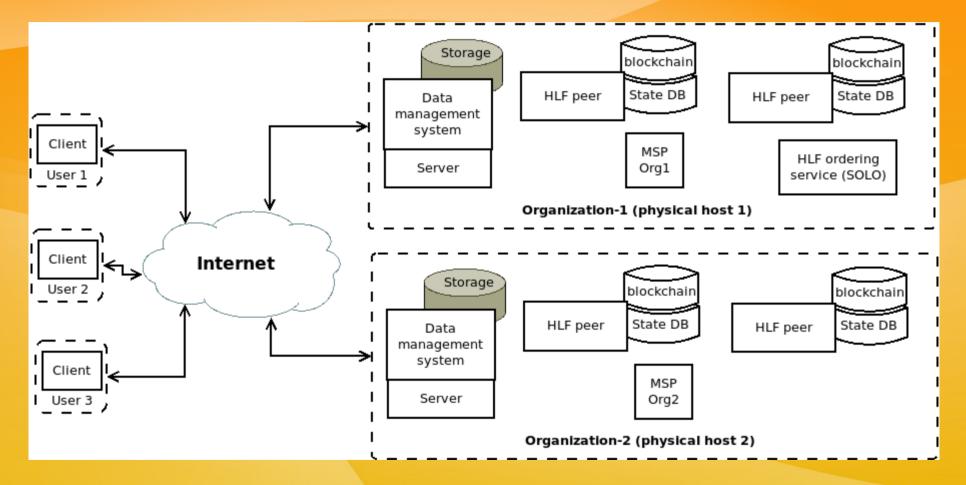
- Transactions
 - FileAccessGrant
 - FileAccessRevoke
 - OperationUploadCreate
 - OperationUploadSetState


ProvHL operation (3/4)

- Operations with files comprise of at least two types of transactions recorded in the blockchain:
 - client requests,
 - server responses
- Operation states: STARTED, COMPLETED, ERROR, ...
- Operation = asset ⇒
 - level of correspondence (history recorded in blockchain)
 ⇔ (real history of the data in the distributed storage) practically acceptable
 - delegation of rights: user/service \rightarrow service

HyperLedger Fabric → ProvHL (4/4)

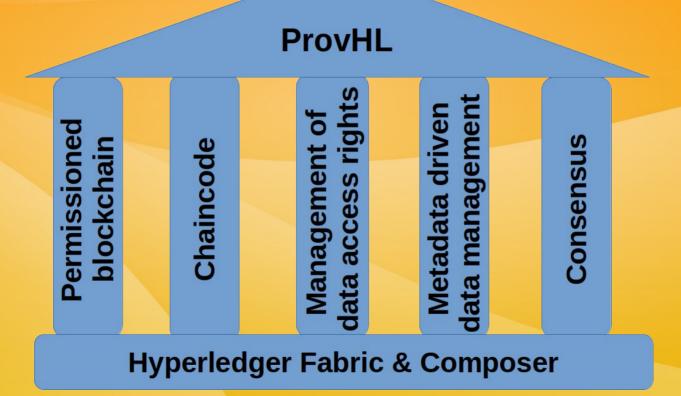
- thanks to its modular structure, it allows using different algorithms to reach consensus between business process participants
- has a developed built-in security system based on PKI


ProvHL operation

Simplified scheme for recording transactions with provenance metadata and managing data access rights based on HLF&C

DLC-2019, Apr 2-7, 2019 A.Demichev, A.Kryukov & N.Prikhod'ko, SINP MSU & NovSU

ProvHL Testbed (2/2)



DLC-2019, Apr 2-7, 2019

A.Demichev, A.Kryukov & N.Prikhod'ko, SINP MSU & NovSU

Conclusion

• The new approach to managing PMD and data access rights in distributed storage has been developed

DLC-2019, Apr 2-7, 2019

A.Demichev, A.Kryukov & N.Prikhod'ko, SINP MSU & NovSU