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manually choose features and a classifier 
to sort images

feature extraction and modeling steps
are automatic



Why using CNN

• It’s a kind of ANN that uses a special 
architecture which is particularly well-adapted 
to classify images. 

• Today, deep CNN or some close variant are 
used in most neural networks for image 
recognition. 

• Feature extraction is automatic instead of 
manual choice (Hillas parameters).



CNN background in other gamma-ray 
astronomy projects

• VERITAS
• H.E.S.S.
• CTA 

– Schwarzschild-Couder Telescopes (medium 
telescopes)

– Large-Sized Telescopes



• Deep learning techniques (CNN)
have previously been developed 
to select gamma-ray events 
in the TAIGA experiment

A good quality of selection was achieved 
as compared with the conventional approach



TAIGA telescope

• TAIGA is an array of telescopes (currently only the 
1st one installed) designed to detect the very high 
energy gamma-rays (>1x1012 eV) through their 
interaction with the Earth's atmosphere. The 
gamma-rays produce a shower of particles that 
travel through the atmosphere, emitting 
Cherenkov light which is then detected by our 
telescope (8.5 m2 mirror area) and projected onto 
the photomultiplier-based camera 
(560 photomultipliers  560 pixels of the image).



TAIGA telescope



Purpose of image analysis

• Particle identification: 
– gamma ray 
VS
– charged cosmic ray, mostly proton.



The idea behind CNN

• The idea of CNN is to behave in an invariant 
way across images. 

• Simple translation of the input image data 
instead of taking some preselected 
parameters of images (e.g. dimensions and 
orientation) lets CNN do all work fully 
automatically (“capable of classifying IACT 
images without any prior parametrization”, 
CTA).



How CNN works
• Convolutional layers apply a convolution 

operation (cross-correlation, or simply 
filtering) to the input, passing the result 
to the next layer, and so on.

• Special features of feedback 
avoid overfitting that was the 
problem for conventional ANN.

How CNN is implemented



Monte Carlo and blind analysis
• Training datasets: gamma-ray and proton images 

(Monte Carlo of TAIGA-IACT, 2-60 and 3-100 TeV
respectively, exponent -2.6); night sky background, 
trigger procedure and detector response added; no 
image cleaning (or very soft cleaning) applied; no 
preselection.

• Test datasets: after CNN training, datasets (different 
from training ones) of gamma-ray and proton images in 
random proportion (blind analysis) were classified by 
each of the packages: TensorFlow and PyTorch. Each 
package output was ‘probability’ of any image to be 
gamma-ray of proton.



Simulated image example:  (left), p (right); no cleaning (top), cleaned (bottom)



Particle identification quality

is  efficiency



Q factor (left) and  efficiency (right)
vs CNN output parameter 

(various CNN after cleaning)
After additional rotations of learning sample by 60⁰, 

leading to a sample size increase from ~30 000 to ~180 000

Problem of the output 
parameter cut value choice



CNN for IACTs [VERITAS, H.E.S.S., CTA]
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CNN for IACTs [H.E.S.S., CTA]



• Now, the same investigation was repeated 
using the graphics processing unit (GPU)

A significantly faster calculation
(for the TensorFlow package, 6 times faster)



Q factor vs CNN output parameter 
Q



• Another new task of data analysis:
gamma-ray candidates energy estimation 

Some improvement found in comparison 
with the conventional method



• Conventional method of energy prediction is 
based on linear correlation between the 
energy and the image size, which works only 
for gamma-rays incident very close to the 
telescope (up to 100-150 m on the ground, or 
equivalently up to ~1 on the camera)



Gamma-ray energy accuracy 
vs distance to the image 

CNN(Energy) 

Image Size x CNN(Energy/Image Size)                        

Non-CNN approach (linear estimation via Image Size) 



Preliminary conclusions
1. Deep learning has previously been developed to 

select gamma-ray events in the TAIGA experiment, 
having achieved a good quality of selection as 
compared with the conventional approach. 

2. DL gamma-ray selection quality was also confirmed 
using the (GPU), which led to a significantly faster 
calculation. 

3. Deep learning was developed to estimate gamma-ray 
energy in TAIGA, it has shown some improvement in 
comparison with the conventional method. 

4. There is still strong potential to further improve the 
results: taking into account the hexagonal pixel shape, 
and increasing Monte Carlo sample size.

5. Verification using experiment data is then required.



Backup slides



Preliminary conclusions
• The standard image cleaning procedure even in a very soft 

variant led to significant improvement of the Q-factor.
• Another yet improvement in quality of identification is due 

to the additional image rotation in learning sample, which 
allows increasing sample size. 

• To get higher Q, problem of choosing CNN output 
parameter value should be solved: the value should be 
taken as much as possible (almost 1), but to avoid losing 
more than 50% of gamma.

• Hexagonal pixel shape should be taken into account 
(H.E.S.S. recommendation is whether resampling the 
images to a square grid or applying modified convolution 
kernels that conserve the hexagonal grid properties).

• Verification using experiment data is required.
• Regression task (energy etc.) study is also required.
• Of course, larger sample size is also necessary.



First effort – MC data ‘as is’

• Trying gamma-ray separation from proton 
background using Monte Carlo images 
without ‘image cleaning’ at all.

• For that purpose special Monte Carlo samples 
were prepared and given for analysis to both 
CNN packages (PyTorch, TensorFlow) as well as 
for a simple Hillas analysis using only two 
basic cuts.



How CNN works
• Convolutional layers apply a convolution 

operation (cross-correlation, or simply 
filtering) to the input, passing the result 
to the next layer, and so on.

• Special features of feedback 
avoid overfitting that was the 
problem for conventional ANN.

How CNN is implemented



First effort – MC data ‘as is’

• Trying gamma-ray separation from proton 
background using Monte Carlo images 
without ‘image cleaning’ at all.

• For that purpose special Monte Carlo samples 
were prepared and given for analysis to both 
CNN packages (PyTorch, TensorFlow) as well as 
for a simple Hillas analysis using only two 
basic cuts.



Monte Carlo and blind analysis
• Training datasets: gamma-ray and proton images 

(Monte Carlo of TAIGA-IACT, 2-60 and 3-100 TeV
respectively, exponent -2.6); NSB, trigger procedure 
and detector response added, but neither cleaning nor 
preselection applied.

• Test datasets: after CNN training, datasets (different 
from training ones) of gamma-ray and proton images in 
random proportion (blind analysis) were classified by 
each of the packages: TensorFlow and PyTorch. Each 
package output was ‘probability’ of any image to be 
gamma-ray of proton.



Simulated image example:  (left), p (right); no cleaning (top), cleaned (bottom)



Particle identification quality

• Idea of deep learning application in our project 
(astroparticle.online, not TAIGA): 
no empirical cleaning or preselections at all 
=> Q (and ROC curve) without preselection.

• To compare with other projects, the Q should be 
recalculated on a dataset subsample after preselection. 
E.g., with 8cm≤Rc≤25cm, size≥60p.e., npix≥6:
– Q(TensorFlow)=4.10 (Q(Hillas)=2.76)

And same but with the size≥100p.e.:
– Q(TensorFlow)=5.43 (Q(Hillas)=3.14)



IACT applications [VERITAS, H.E.S.S., 
CTA]

• VERITAS: selection of muon images, 
PoS(ICRC2017)826.

• H.E.S.S.: selection of gamma-ray events, stereo 
IACTs, 960 hexagonal pixels, arXiv 1803.10698. 

• CTA: 
– selection of gamma-ray events, standalone IACT, 

>11000 square pixels, PoS(ICRC2017)809. 
– energy, direction and impact point



CNN for IACTs [VERITAS, H.E.S.S., CTA]
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How CNN works

The idea of CNN is to behave in an invariant way 
across images. 

Simple translation of the input image 
data instead of taking some preselected
parameters of images (e.g. Hillas
parameters) lets CNN do all work fully automatically.



Q vs CNN output parameter 
(various CNN after same soft cleaning)

After additional rotations of learning sample by 60⁰, 
so that a sample size arouse from ~30 000 to ~180 000



Number of correctly identified -rays vs
CNN output parameter 

(Problem of the ‘cut value’ choice)


