

KASCADE ultra-high energy γ -ray search

DLC-19, Irkustk

V. Tokareva | 4 April 2019

INSTITUTE FOR NUCLEAR PHYSICS (IKP)

www.kit.edu

Motivation

γ-rays:

- are not deflected by interstellar magnetic fields ⇒ can be tracked to their origin;
- can be used for point sources search;
- γ -ray flux study could bring us insights on cosmic rays acceleration mechanisms.
- VHE and UHE γ -rays:
 - not so well-investigated because of flux intensity decrease for all CR particles at higher energies and because of a large absortion on the cosmic microwave background and interstellar matter;
 - are supposed to be produced by black holes, neutron stars, supernova remnants, super-bubbles / star-forming regions / young massive star clusters;
 - could improve our understanding about properties of matter in extreme states that cannot be studied in laboratories.

2/14

KASCADE experiment

- Location: 110 m a.s.l., 49°N, 8°E, KIT-Campus North, Karlsruhe, Germany;
- Operation time: 1996 October – 2010 May \Rightarrow effective time \sim 4223.6 days;
- Area: 200 × 200 m²;
- 252 scintillator detectors;
- *E* = 100 TeV 80 PeV;
- *N_e* (> 5 MeV);
- *N*_{trµ} (> 230 MeV,
 r = 40 200 m).

Analysis technique

KASCADE-Grande γ ray searches

- Limits on the diffuse gamma-ray flux;
- Significant improvement of the limits around 5 × 10¹⁵ eV;
- The obtained values are compared to various lceCube excess models.

[1] W. Apel et al., *KASCADE-Grande Limits on the Isotropic Diffuse Gamma-Ray Flux between 100 TeV and 1 EeV*, 2017, ApJ, 848, 1.

Stacked analysis

 $\frac{\sum_{i=1}^{n} \mathbf{v}_{i}}{\sum_{i=1}^{n} \Omega_{i}^{\mathrm{src}}}$

 N_i^{src} is a number of events for the *i*-th source,

 Ω_i^{sc} is a solid angle of the selected area of the sky around the *i*-th source,

 N^{bg} is a number of background events, Ω^{bg} is a solid angle of the area used f

 $\Omega^{\rm bg}$ is a solid angle of the area used for background estimation.

Conclusion

V. Tokareva - KASCADE γ-ray search

Example: recent work by Carpet-2

- UHE γ-ray search;
- 34 published IceCube high-energy neutrino events;
- 95% CL upper limit on total steady flux of $E_{\gamma} > 1$ PeV photons: 8.5 × 10⁻¹⁵ cm⁻²s⁻¹.
- 95% CL upper limit on fluence of $E_{\gamma} > 1$ PeV photons for the IceCube EHE3 flare: 4.4×10^{-5} PeV/cm².
- D.D. Dzhappuev et al., Carpet-2 search for PeV gamma rays associated with IceCube high-energy neutrino events, arXiv:1812.02662 [astro-ph.HE].
- [2] D.D. Dzhappuev et al., Search for astrophysical PeV gamma rays from point sources with Carpet-2, arXiv:1812.02663 [astro-ph.HE].

 Introduction
 KASCADE experiment
 Analysis technique
 KASCADE γ-ray search
 Conclusion

HAWC highest-energy γ -ray sources

six sources in the Galactic plane that emit above 56 TeV:

two of them continue to emit past 100 TeV:

[1] Malone, K. (2018). A survey of the highest-energy astrophysical sources with the HAWC Observatory (Doctoral dissertation). Retrieved from https://hawc-observatory.org/publications/docs/Malone-Dissertation.pdf

Analysis technique

Sources in KASCADE field of view

with energy E above 56 TeV.

Introduction

KASCADE experiment

Analysis technique

KASCADE γ -ray search

Conclusion

V. Tokareva - KASCADE γ-ray search

April 4, 2019

8/14

Data cuts and corrections

Introduction

Analysis technique

KASCADE γ -ray search

Conclusion 9/14

Estimation of the integral flux and the expected number of measured γ -rays for the *2HWC_J2013+415* source

$$F_{\text{int}}(E^*) = \int_{E^*}^{\infty} F_0 \left(\frac{E}{E_0}\right)^{-\alpha} dE,$$

 $F_0 = 3.4 \times 10^{-14} \text{ cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}, E_0 = 7 \text{ TeV}, \alpha = 2.7.$

<i>E</i> * [TeV]	$F_{\rm int} [{\rm cm}^{-2} {\rm s}^{-1}]$	$N_{\gamma}(expected)$
7	$1.4 imes 10^{-13}$	441
56	$4.1 imes 10^{-15}$	12.9
100	$1.5 imes10^{-15}$	4.8
1000	$3.1 imes 10^{-17}$	0.096

With $\alpha \approx$ 2.7 KASCADE can have few gamma events with $E^* > 100$ TeV in dataset.

Tunka-133 and TAIGA-HiSCORE

Similarities to KASCADE:

- located at the same latitude;
- measure the same CR spectrum;
- rely on the same hadronic interaction models for the interpretation of their data;
- Differences with KASCADE:
 - The experiments have different observation levels;
 - They are using different measurement techniques, namely scintillator arrays and air Cherenkov detectors respectively;

Analysis technique

KASCADE-TAIGA joint analysis

The possibility to map Tunka-133 and KASCADE-Grande spectra was shown at: W.D. Apel et al., *Tunka-Rex and LOPES Collaborations*, Phys. Lett. B **763** (2016) 179

With a systematic increase of KASCADE-Grande energies by 4% (or a corresponding decrease of Tunka-133 energies) the average flux per energy of both experiments can be brought to agreement in this energy range.

Introduction	KASCADE experiment	Analysis technique	KASCADE γ -ray search	Conclusion
V Tokareva – KAS(CADE ∞ -ray search		April 4 2019	12/14

- γ-proton separation can be performed quite well at KASCADE using electron-muon discrimination;
- The separation using X_{max} at Tunka-133 is much more uncertain.
- It could be possible to select muon-poor showers using data from the Tunka-Grande setup.

Conclusion

- UHE and VHE γ -ray point source search;
- Stacked analysis of KASCADE events for HAWC sources with *E* > 56 TeV;
- 2HWC_2019+367 and 2HWC_J2013+415;
- Expected gamma flux is calculated for 2HWC_J2013+415 up to 1 PeV;

Future plans

- Study the possible background exceed within a 5° radius around the sources;
- Extend to the data from the TAIGA experiment;
- Check other sources within our galaxy.

Bonus slides

German-Russian Astroparticle Data Life Cycle Initiative*

Matrosov Institute for System Dynamics and Control Theory

KASCADE - Grande

*Granted by RSF-Helmholtz Joint Research Groups

Appendix οοο V. Tokareva – KASCADE γ-ray search

KASCADE Cosmic-ray Data Center (KCDC)

- providing free, unlimited, reliable open access to KASCADE cosmic ray data at https://kcdc.ikp.kit.edu;
- almost all KASCADE data is available;
- selection of fully calibrated quantities and detector signals;
- information platform: physics and experiment backgrounds, tutorials, meta information for data analysis;
- archive of KASCADE software and data;
- uses modern and open source web technologies.

KASCADE and TAIGA data rates

KASCADE:

- 450 000 000 events
- \sim 4 TB of measured data
- planned TAIGA rate: 20 TB/waar
 - \sim 20 TB/year
 - HiSCORE: ~ 18 TB/year
 - IACT: ~ 1.5 TB/year
 - others: ~ 0.5 TB/year

current TAIGA rate:

- \sim 50 Tb of raw data;
 - \sim 8 TB/year of reconstructed data:
 - HiSCORE:
 - \sim 6.4 TB/year
 - IACT: ~ 1 TB/year
 - others: ~ 0.5 TB/year

Machine and deep learning opporutities

- Search for anisotropies Clasterization;
- Distinguishing gamma/not gamma (distribution-based [β]) Classification.

The German-Russian Astroparticle Data Life Cycle collaboration I

KASCADE - Grande

TAIGA—Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy (see taiga-experiment.info);

KASCADE-Grande—KArlsruhe Shower Core and Array DEtector—Grande (see www-ik.fzk.de/KASCADE_home.html);

KIT-IKP—Institute for Nuclear Physics Karlsruhe Institute of Technology

SCC—Steinbuch Centre for Computing Karlsruhe Institute of Technology

The German-Russian Astroparticle Data Life Cycle collaboration II

SINP MSU—Skobeltsyn Institute Of Nuclear Physics Lomonosov Moscow State University

ISU—Irkutsk State University

ISDCT—Matrosov Institute for System Dynamics and Control Theory

References

 Berghöfer T., Agrafioti I. *et al.* Towards a model for computing in European astroparticle physics, Astroparticle Physics European Coordination committee, 2016, web-source: http://appec.org/wp-content/uploads/ Documents/Docs-from-old-site/AModelForComputing-2.pdf;

- KCDC—KASCADE Cosmic Ray Data Center, web-source: http://kcdc.ikp.kit.edu;
- KASCADE-Grande official site, web-source: http://www-ik.fzk.de/KASCADE_home.html;
- TAIGA collaboration official site, web-source: http://taiga-experiment.info;
- Astroparticle.online—outreach resource, web-source: http://astroparticle.online.