Multimessenger Perspectives on High-Energy Cosmic Neutrinos

PENNSTATE

Kohta Murase (Penn State/YITP)

September 26 KIT Seminar

2023: Milky Way Observed by Not Only Photons but also "Neutrinos"

Why Cosmic V?

- Electrically neutral lepton
- Weak interaction: ghost particle
- Almost massless but tiny mass (<1/10⁶ electron mass)

Astrophysics

Particle Physics

Prof. Kajita: "I want to thank the neutrinos, of course. And since neutrinos are created by cosmic rays, I want to thank them, too"

Cosmic-Ray Origin - A Century Old Puzzle

power-law spectrum

$$\frac{dN_{\rm CR}}{dE} \propto E^{-s_{\rm CR}}$$

acceleration mechanisms? propagation processes?

ultrahigh-energy cosmic rays "UHECRs"

3x10²⁰ eV ~ 50 J ~ kinetic energy of a tennis ball with 160km/h!

Amaterasu particle

E~2x10²⁰ eV

TA Collaboration 23 Science

UHECR vs Large Hadron Collider (LHC)

Cosmic Accelerators: Monster Black Holes?

M87 (galaxy)

supermassive black hole (~6,500,000,000 solar mass)

IceCube & Discovery of High-Energy Cosmic Neutrinos

IceCube @ south pole completed in 2010

- volume~1 km³, mass~Gton
- 86 strings (120 m spacing)
- 5160 PMTs (17 m spacing)

2012-2013: evidence of high-energy cosmic ν

All-Sky Neutrino Flux & Spectrum

all-sky ∨ flux (intensity)

 $E_{\nu}^{2}\Phi_{\nu} \sim 10^{-8}\text{-}10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

IceCube Collaboration 20 PRL IceCube Collaboration 21 Nature

Detection of High-Energy Neutrinos

 v_e fraction (f_e)

IceCube 25 ICRC

7 candidates found though neutral network ($>5\sigma$)

Where do neutrinos come from?

Diffuse emission from the Milky Way

γ rays produced inside the Milky Way mostly reach Earth

Importance of Multimessenger Connection – Milky Way Case

A decade ago, neither γ rays NOR ν s were observed in the sub-PeV range. (Note that most γ rays from Galactic sources reach Earth.)

But we already learned that Galactic contribution to IceCube vs is subdominant.

$$p + p \rightarrow N\pi + X$$
 $\pi^0:\pi^{\pm} \sim 1:2 \rightarrow \mathbf{E_{\gamma}^2} \Phi_{\gamma} : \mathbf{E_{\gamma}^2} \Phi_{\nu} \sim 2:3$ (comparable)

Galactic Diffuse Sub-PeV Gamma Rays Are NOW Measured

2023: Evidence of Neutrinos from the Milky Way

Neutrino emission from the Milky Way (~10% of total) has been observed w. 4.5σ

Galactic Multimessenger Connection: Current

High-Energy Neutrino Sky

consistent w. isotropic distribution/extragalactic origins

#Galactic contribution: ~10% (IceCube 23 Science)

All-Sky Multimessenger Flux & Spectrum

Energy Budgets of High-Energy Cosmic Particles

UHECR energy generation ~ sub-PeV ν energy generation ~ sub-TeV γ-ray energy generation

	ccSN (CR)	HN (CR)	DNS (CR)	GRB (γ)	LL GRB (γ)	TDE (γ)
$Q \text{ [erg Mpc}^{-3} \text{ yr}^{-1}]$	10 ^{46.6}	10 ^{45.5}	10 ^{44.5}	10 ^{43.6}	10 ^{43.5}	$10^{43.5} \\ 10^{-10.5}$
$\rho \text{ [Mpc}^{-3} \text{ yr}^{-1}]$	10 ⁻⁴	10 ^{-5.5}	10 ^{-5.8}	10 ⁻⁹	10 ^{-6.5}	
$Q [erg Mpc^{-3} yr^{-1}]$ $n [Mpc^{-3}]$	SBG (γ)	AGN (X)	BL Lac (γ)	FSRQ (γ)	RG (γ)	Accr/Mger (CR)
	10 ^{44.5}	10 ^{46.3}	$10^{45.4}$	$10^{44.3}$	10 ^{44.6}	10 ^{46.5}
	10 ⁻⁴	10 ⁻⁴ – 10 ⁻³	$10^{-7} - 10^{-6.5}$	$10^{-9} - 10^{-8}$	10 ⁻⁵ - 10 ⁻⁴	10 ⁻⁶ – 10 ⁻⁵

All-Sky Multimessenger Flux & Spectrum

High-Energy Gamma-Ray Sky

Extragalactic \(\gamma\)-Ray Sky: Dominated by On-Axis Jetted AGN

2017: Hints of Neutrinos from On-Axis Jetted AGN

Extragalactic v Sky: NOT Dominated by On-Axis Jetted AGN

Stacking searches are powerful to constrain vs from on-axis jetted AGN

Where do neutrinos come from?

Multi-messenger analyses disfavor on-axis jetted AGN (and classical γ -ray bursts) as the "dominant" ν origin

All-Sky Multimessenger Flux & Spectrum

Extragalactic Multimessenger Connection

10-100 TeV v IceCube data: large fluxes of ~10-7 GeV cm-2 s-1 sr-1

Fermi γ -ray data are violated (>3 σ) if ν sources are γ -ray transparent

 \rightarrow IceCube ν sources: hidden (i.e., γ -ray opaque) cosmic-ray accelerators

Extragalactic Multimessenger Connection

10-100 TeV v IceCube data: large fluxes of ~10-7 GeV cm⁻² s⁻¹ sr⁻¹

Fermi γ -ray data are violated (>3 σ) if ν sources are γ -ray transparent

 \rightarrow IceCube ν sources: hidden (i.e., γ -ray opaque) cosmic-ray accelerators

Prediction of Hidden Neutrino Sources

Hidden (i.e., γ -ray opaque) ν sources are actually "natural" in $p\gamma$ scenarios

$$\underset{\text{optical depth } \tau_{\gamma\gamma}}{\text{optical depth}} \tau_{\gamma\gamma} \approx \frac{\sigma_{\gamma\gamma}^{\text{eff}}}{\sigma_{p\gamma}^{\text{eff}}} f_{p\gamma} \sim 1000 f_{p\gamma} \gtrsim 10$$

KM, Kimura & Meszaros 20 PRL Kimura, KM & Meszaros 21 Nature Comm.

accretion disk + "corona"

opt/UV=multi-temperature blackbody X-ray=Compton by thermal electrons

All-sky 10-100 TeV neutrino flux can be explained by AGN

Prediction of Hidden Neutrino Sources

Hidden (i.e., γ -ray opaque) ν sources are actually "natural" in p γ scenarios

Comptonized X rays
CR-induced cascade
CR optical/UV

Black hole

A CR Optical/UV

accretion disk + "corona"

opt/UV=multi-temperature blackbody X-ray=Compton by thermal electrons

All-sky 10-100 TeV neutrino flux can be explained by AGN

Prediction of Hidden Neutrino Sources

Hidden (i.e., γ -ray opaque) ν sources are actually "natural" in p γ scenarios

$$\underset{\text{optical depth } \tau_{\gamma\gamma}}{\text{optical depth}} \tau_{\gamma\gamma} \approx \frac{\sigma_{\gamma\gamma}^{\text{eff}}}{\sigma_{p\gamma}^{\text{eff}}} f_{p\gamma} \sim 1000 f_{p\gamma} \gtrsim 10$$

KM, Kimura & Meszaros 20 PRL Kimura, KM & Meszaros 21 Nature Comm.

accretion disk + "corona"

opt/UV=multi-temperature blackbody X-ray=Compton by thermal electrons

All-sky 10-100 TeV neutrino flux can be explained by AGN But do such hidden v source (candidates) exist??

Evidence for neutrino emission from the nearby active galaxy NGC 1068

IceCube Collaboration*†

ASTRONOMY

Neutrinos unveil hidden galactic activities

An obscured supermassive black hole may be producing high-energy cosmic neutrinos

Obscured AGN as a Hidden Neutrino Source

Obscured AGN as a Hidden Neutrino Source

Where Do Neutrinos Come from?

compatible w. p γ calorimetry (f $_{p\gamma}$ >1) condition: **R** < **30-100 R**_S **Massive black hole**: sub-PeV proton accelerator & ideal beam dump

Multimessenger Implications for Neutrino Production Mechanisms

- Multimessenger connection is robust and must be considered
- Exotic models are excluded if relevant processes are consistently included
- Also unlikely by the energetics requirement: $L_{CR} < L_{bol} \sim L_{Edd} \sim 10^{45} \text{ erg/s}$

Details of Particle Acceleration Sites? - Unknown

magnetically-powered corona

(KM+ 20, Kheirandish, KM & Kimura 21)

- turbulence/shear
- magnetic reconnection

Jiang, Blaes, Stone & Davis 19 see also Miller & Stone 00, Liska+ 22

Particle Acceleration Mechanism in Coronae (Extra)?

stochastic acc. in 3D global MHD simulations

stochastic acc. in 3D PIC simulations

see also Hoshino 15 PRL, Zhdankin+ 17 PRL Comisso & Sironi 22

High-energy neutrinos now meet the frontier of astroplasma physics

Multimessenger Implications for Coronae as v Production Sites

Multimessenger constraints are improved by updated Fermi-LAT analyses (Ajello, KM & McDaniel 23 ApJL)

If v emission comes from X-ray coronae, plasma should be magnetically dominated

$$\beta = \frac{8\pi n_p k_B T_p}{B^2} \approx \frac{\tau_T G M_{\rm BH} m_p}{\sqrt{3} \zeta_e \sigma_T R^2 U_\gamma} \xi_B^{-1} \approx \left(\frac{\tau_T}{\sqrt{3} \zeta_e \lambda_{\rm Edd}}\right) \xi_B^{-1} \quad \underset{\xi_{\rm B}}{\tau_{\rm T}} \sim 0.1\text{-1 for X-ray corona, } \lambda_{\rm Edd} \sim 0.5$$

Das, Zhang & KM 24 ApJ

γ Rays Must Not Be Gone: Hints & Future MeV γ-Ray Tests

- Corona model prediction: cascade γ rays should appear in the MeV range
- Fermi γ -ray observation: sub-GeV "excess" over the starburst component

Other AGNs?

- Corona model prediction: v luminosity ~ intrinsic X-ray luminosity
 brightest in north: NGC 1068, NGC 4151

 (KM+ 20 PRL, KM+ 24 ApJL)
 brightest in south: NGC 4945, Circinus
 - IceCube v TeV excess: (IceCube Collaboration 24a, 24b, 24c) NGC 1068 (~4 σ), NGC 4151 (~3 σ), Circinus (~3 σ for AGNs in south)
 - Fermi γ-ray sub-GeV excess:
 NGC 1068, NGC 4945

Model A: same as NGC 1068

Model B: P_{CR}/P_{vir}=8%

KM, Karwin, Kimura, Ajello & Buson 24 ApJL

Further Tests with Neutrinos

- 2.6 σ with 8 yr upgoing v_{μ} events and IR-selected AGN (IceCube 22 PRD)
- Good news for KM3Net/Baikal-GVD/P-ONE: many bright AGN in south

testable w. near-future data or by next-generation neutrino detectors

AGN Can Dominate the All-Sky v and X-/\gamma-Ray Fluxes

- Jet-quiet AGN (coronae) can explain the all-sky neutrino intensity self-consistently.
- But >100 TeV neutrinos may originate from different source classes "more open"

High-Energy Astro-Particle Grand-Unification?

> PeV vs may be physically related to UHECRs and isotropic diffuse γ rays (unification) Exploring ultrahigh-energy vs is important for testing the v-UHECR connection

(cf. Unger, Farrar & Anchordoqui 15)

- Neutrinos from confined CRs & UHECRs from escaping CRs
- Smooth transition from PeV (source v) to EeV (cosmogenic v)

Supermassive black holes as multimessenger sources? Need more statistics for "discoveries"

Bright Future (w. Some Patience)

More multimessenger data in the next decade will enable us to test the proposed models

Summary

Success of multimessenger approaches to high-energy ν sources all-sky sub-TeV γ flux ~ all-sky sub-PeV ν -ray flux ~ all-sky UHECR flux

Multimessenger quests for the origin of high-energy cosmic neutrinos

- Galactic: multimessenger connection is now observed supporting the hadronic origin of the Galactic diffuse γ -ray flux
- Extragalactic: multimessenger connection requires γ -ray hidden ν sources AGN (jet-quiet): could be the dominant sources of the all-sky neutrino flux NGC 1068: evidence of a hidden ν source (need more statistics!)
 - \rightarrow vs should be produced within 10-30 Schwarzschild radii "unique" probe of non-thermal phenomena powered by black holes testable w. planned MeV γ -ray and ν detectors

High-energy multimessenger transients

- Strategic multimessenger searches in the Rubin era

Multimessenger quests for particle physics (bonus)

- Example: unique probe of very heavy dark matter up to the GUT scale

No Patience? Game Changing in v Transient Searches

- Supernovae, tidal disruption events, lowluminosity gamma-ray bursts...
 (e.g., Stein+ 21 Nature Astronomy, Reusch+ KM 21 PRL)
- Testability of models have been limited by the number of detected transients
- Neutrino singlet followups would need spectroscopic information
- Neutrino multiplet followups
- Multimessenger alert (e.g., AMON) followups

Interacting Supernovae as Multimessenger Transients

- Confined CSM (R_{cs} <~ 10¹⁵ cm): mass ejection or extended envelope
- May be common even for Type II-P SNe $dM_{cs}/dt\sim10^{-3}$ - 10^{-1} M_{sun} yr^{-1} (>> $3x10^{-6}$ M_{sun} yr^{-1} for RSG)
- Shock accelerated cosmic rays produce cosmic rays, vs and γs (KM+ 11 PRD, KM 18 PRDR, KM 24 PRD)

Neutrino Light Curve

slowly declining light curves while pion production efficiency ~ 1

Next Galactic Supernova?

- Type II: ~100-1000 events of TeV v from the next Galactic SN ex. Betelgeuse: ~10³-3x10⁶ events, Eta Carinae: ~10⁵-3x10⁶ events
- SNe as "multi-messenger" & "multi-energy" neutrino source
- "Real-time" detection of CR acceleration, testing Pevatrons, neutrino physics

Be Best Prepared for Nearby Cosmic Explosions

- Supernovae (SNe): "multimessenger" & "multi-energy" v sources
- ~1000 events of TeV v from the next Galactic SNe (KM 18 PRDR, 24 PRD)
- LHC ATLAS/CMS as cosmic v detectors (Wen, Arguelles, Kheirandish & KM 24 PRL)
- Monitoring with "global v detector network" (Kheirandish & KM 23 ApJL)

Detectability of "Minibursts"

- CCSN rate enhancement in local galaxies (ex. Ando+ 05 PRL)
- Neutrino telescope networks are beneficial for nearby SNe at Mpc
- II (CCSM): detectable to ~3-4 Mpc
 IIn: detectable to ~10 Mpc

Kheirandish & KM 23 ApJL

Detection w. Large Hadron Collider

LHC ATLAS calorimeter ρV=4 kt

N ~ ρ V N_A $\sigma_{\nu N}$ E_{ν} Φ_{ν} ~ $3x10^{-3}$ E_{ν} Φ_{ν} ~ 1 (E_{ν} $\Phi_{\nu}/300$ cm⁻²) diameter 22m length 40m

Multimessenger Emission of Decaying Dark Matter

Heavy dark matter remain largely unexplored by direct/collider experiments

Largely constrained by Fermi (sub-TeV γ) and air-shower (sub-PeV γ) data

KM, Laha, Ando & Ahlers 15 PRL

Multimessenger Search for Superheavy Dark Matter

- LHAASO and Fermi limits are complementary and comparable around PeV
- Nearly excluding dark matter scenarios to explain the all-sky IceCube v data
- Unique probes of superheavy dark matter that is difficult to directly test

Multimessenger Search for Superheavy Dark Matter

UHE v detectors

- Gen2-radio & GRAND subject to unknown astro bkg.
- lunar radio detection
 τ_{DM} >~ 10³⁰ s up to GUT
 no astro bkg. at such UHE

UHECR detectors (Auger)

- Upper limits on UHE γ $\tau_{DM} > 10^{30}$ s up to GUT scale

Example: Inflaton Dark Matter

 10^{-26}

 10^{-27}

 10^{-28}

 10^{-29}

 10^{-30}

KM, Narita & Yin JCAP 25

KM-230213A

Amaterasu

- Inflaton dark matter models in (modified) natural inflation (entropy dilution necessary)
- Scalar dark matter $\phi \to H\bar{q}q, \; \bar{H}\bar{l}l, \; \bar{H}H, \; gg, \; AA, \; BB,$
- UHE neutrons can also be used as good probes of superheavy DM

Search for Heavy Dark Matter in Galaxy Clusters

- Fermi limits overwhelm MAGIC/HAWC limits thanks to γ-ray cascades.
- LHAASO and updated IceCube analyses will be useful.

Search for Heavy Dark Matter in Dwarf Galaxies

Supermassive Black Hole Neutrinos as a Probe of Dark Matter

- AGN vs originate from CRs within 10-30 Schwarzschild radii
- High DM density at the center of AGN ("DM spike")
- CR cooling due to DM-SM scattering
 Most stringent constraints on DM-p scattering for DM in the MeV range

Example of Scalar-Mediated DM-Nucleon Interactions

Herrera & KM 24 PRDL

$$\mathcal{L} \supset -m_{\chi}\bar{\chi}\chi - g_N\phi\bar{N}N - g_{\chi}\phi\bar{\chi}\chi$$

$$\frac{d\sigma_{\mathrm{DM-CR}i}^{\phi}}{dT_{\mathrm{DM}}} = \frac{m_{\phi}^{4}}{\left(q^{2} + m_{\phi}^{2}\right)^{2}} \frac{d\sigma_{\mathrm{DM-CR}i}}{dT_{\mathrm{DM}}}$$

non-relativistic DM cross section

$$\sigma_{\mathrm{DM}-N} = \frac{g_{\chi}^2 g_N^2 \mu_{\chi-N}^2}{\pi m_{\phi}^4}.$$

NGC 1068 observations enable us to probe new parameter space

Application to Inelastic Dark Matter

$$\chi_1 + i \rightarrow \chi_2 + i$$

- DM may be inelastic (ex. pseudo-Dirac)
- DIS can be important!
- CR cooling limits (IceCube)
- Boosted DM limits (Super-K)

Gustafson, Herrera, Mukhopadhyay, KM & Shoemaker 2408.08947

Secret Neutrino Interactions

$$\mathcal{L} \supset G\nu\nu\phi$$

$$\mathcal{L} \supset G \bar{\nu} \ Z' \nu$$

Bardin, Bilenky & Pontecorvo 70

Applications to IceCube Ioka & KM 14 PTEP Ng & Beacom 14 PRD

ex. Majorana v self-interactions via a scalar (Blum, Hook & KM 14)

$$\mathcal{L} = -\frac{g}{\Lambda^2} \Phi(HL)^2 + cc \qquad \text{SSB} \\ \text{lepton \# violation} \\ \mathcal{L} = -\frac{1}{2} \sum_i \left(m_{\nu_i} + \mathcal{G}_i \phi \right) \nu_i \nu_i + cc + ..., \ m_{\nu_i} = \frac{g_i \mu v^2}{\Lambda^2}$$

BSM v-v and v-DM interactions via MeV mediators:

- 1. small-scale structure problems
- 2. Hubble tension

HE neutrinos interact w. cosmic neutrino background or dark matter

$$\epsilon_{\rm res} = \frac{m_{\phi}^2}{2m_{\nu}} = 1 \text{ PeV} \left(\frac{m_{\phi}}{10 \text{ MeV}}\right)^2 \left(\frac{m_{\nu}}{0.05 \text{ eV}}\right)^{-1}$$

→ modulation in neutrino spectra

ex. Blum. Hook & KM 14, Araki+ 14 PRD, Shoemaker & KM 16 PRD...

BSM Tests with Multi-Messenger Transients

BSM v-v/v-DM interactions could alleviate H₀ tension & small-scale issues

BSM & Time-Domain Multi-Messenger Astrophysics

