

Validation of the τ-embedding method of CMS for the LHC Run-3 data-taking period

Final presentation

Jannik Demand, Christian Winter, Roger Wolf

Background modeling with classic Monte Carlo

- Simulation struggles with description of pile-up and jets
- Detector model deviates from reality

Background modeling with embedded data

- Simulation struggles with description of pile-up and jets
- Detector model deviates from reality

- Embedding is an alternative way for generating ττ test samples
- The technique aims to convert easily detectable μμ events into ττ

The τ embedding method

 $Z \to \mu\mu$ Selection $Z \to \tau \tau$ Simulation $Z \to \mu\mu$ Cleaning Taken from A.M. Sirunyan et al 2019 JINST 14 P06032 $Z \to \tau \tau$ Hybrid with same kinematic deposits from muons. properties as muons. Merge simulated and

1 Selecting $Z \rightarrow \mu\mu$

- 1 Selecting Z → μμ
- 2 Removing energy deposits from event

aken from A.M. Sirunyan et al 2019 JINST 14 P06032

ken from A.M. Sirunyan et al 2019 JINST 14 P06032

faken from A.M. Sirunyan et al 2019 JINST 14 P06032

- 1 Selecting Z → μμ
- 2 Removing energy deposits from event
- 3 Simulating τ pair with kinematics of the μ pair

faken from A.M. Sirunyan et al 2019 JINST 14 P06032

- 1 Selecting $Z \rightarrow \mu\mu$
- 2 Removing energy deposits from event
- 3 Simulating τ pair with kinematics of the μ pair
- 4 Merging simulated and cleaned event

faken from A.M. Sirunyan et al 2019 JINST 14 P06032

Validating τ embedding

Validation method: Replacing μ pair from data with simulated μ pair

μ-embedded events should behave exactly like the original event

Topic of my thesis: Validate embedding for Run 3 data

Data

- 2022G muon dataset with 723821 events Input:
- Output: 32861 events (4.5%)

- Quality cuts:
 - Leading μ (Lμ) p_T>16 GeV
 - \blacksquare Only muons with p_T>8 GeV are considered
 - At least 2 loose muons

32389 events (98.6%) pass

Muons

Validation of $Z \rightarrow \mu\mu$ candidate direction

- Matching Z → μμ candidates on embedded data
- Match if $\Delta R = (\Delta \phi^2 + \Delta \eta^2)^{1/2} < 0.1$

- Result:
 - 97.6% of filtered event meet criterion
 - 350 L μ + 428 Sl μ pairs with higher Δ R

Validation of combined mass m_{vis}

- $\mathbf{m}_{\mu\mu}$ is the combined $\mu\mu$ mass in the Z restframe
- Ideally all datapoints would lie on the diagonal

Validation of combined p_T and m_{vis}

- Reproduced events without FSR
- ■99.7% pass the filters
- No bad match
- Resulting uncertainties
 - $\sigma_{\phi} = 0.0002$
 - $\sigma_{\eta} = 0.03$
 - $\bullet \sigma_{\text{max}} = 1.18 \text{ GeV}$ (1.5%)

Jets

Validation of Jets

- Only jets with p_T>25 GeV considered
- Leading Jet (LJ) found in 97.2% of events, subleading jets (SJ) in 86.3%
- 99% of LJ and SJ matches with $\Delta R < 0.2$

- LJ: $\sigma_{\phi} = 0.10$, $\sigma_{\eta} = 0.07$
- SJ: $\sigma_{\phi} = 0.08$, $\sigma_{\eta} = 0.10$

Comparison of jet p_T agreement

■ Jets in the remaining event $\sigma_{p_{\tau}}$ = 1.49 (2.8%)

Comparison of jet p_T agreement

■ Jets in the remaining event $\sigma_{pr} = 1.49 (2.8\%)$

■ Jets nearby the embedded μ $\sigma_{pr} = 5.33 (9.2\%)$

Dis-/ Appearing of jets in the event

- Removing all matchable jets leaves only particles without counterpart
- Plot shows unm. jets as function of distance to closest embedded muon

- 13.0% of events affected
 - Most unm. Embbedding jets enclose the embedded particles
 - Most jets remain even if the 25 GeV cut is applied

Random deposits going missing

Deposits are not clustered

MPT

Validation of the missing p_T direction

- Higher inaccuracies than direction $\sigma_{p_{\tau}} = 4.88 \ (21.0\%)$
- Correlation analysis shows: Deviations are mostly caused by deviations in jet momentum and number
- Low absolute values are more affected by jet fluctuations

Conclusion

Conclusion & Outlook

- Direction and momentum of muons are well described in embedded samples
- (Sub-) leading background jets are also well described on average
- Momentum of jets close to embedded muons had relatively high uncertainty
- 13.0% of events have a missing/ additional jet and deposits
- P_{T, miss} has relatively high uncertainties but agrees on average
- Next Steps:
 - Why are jets dis-/appearing?
 - Run embedding on all available Run 3 events

Backup

Muons

Validation of combined mass m_{vis}

- $\mathbf{m}_{\mu\mu}$ is the combined $\mu\mu$ mass in the Z restframe
- Ideally all datapoints would lie on the diagonal
- 774 events near the Z boson mass with $m_{\mu\mu, data}$ $m_{\mu\mu, emb}$ >10 GeV

P_T of embedded μ underestimated due to Final State Radiation (FSR)

- Production repeated with FSR turned off
- 32861 events

- 99.7% pass the filters
- No bad match

Dis-/ Appearing of muons in the event

- All μ from data are matched on all μ in embedding before applying quality cuts
- Matches are removed
- For the unmatchable μ the distance ΔR_{min} to the closest $Z \rightarrow \mu\mu$ candidate is calculated

- 6590 muons in data without match
- 350 muons in embedding

- Removing all matchable μ leaves only particles without counterpart
- Plot shows unm. muons as function of distance to closest embedded muon
- After cuts: >99.9% events without unmatchable muons
- 237 (82.2%) of unmatchable muons are close to $Z \rightarrow \mu\mu$

No significant amount of muons is removed or added

Jets

Matching of jets in the remaining event

- Leading Jet (LJ) found in 34.9% of events Subleading jets (SJ) in 11.7%
- 19 bad matches with $\Delta R > 0.2$

- LJ: $\sigma_{\phi} = 0.04$, $\sigma_{\eta} = 0.01$
- SJ: $\sigma_{\phi} = 0.08$, $\sigma_{\eta} = 0.13$

Validation of jets in the remaining event

$$\sigma_{p_{T}} = 1.5 (2.8\%)$$

$$\sigma_{p_{T}} = 1.59 (3.7\%)$$

Matching of jets nearby embedded muons

- Leading Jet (LJ) found in 95.5% of events, subleading jets (SJ) in 77.3%
- 99% of LJ and SJ matches with △R<0.1

- LJ: $\sigma_n = 0.05$, $\sigma_{\phi} = 0.09$
- SJ: $\sigma_n = 0.01$, $\sigma_{\phi} = 0.01$

Validation of jet p_T near the $Z \rightarrow \mu\mu$ candidates

$$\sigma_{p_{\tau}} = 5.33 \ (9.2\%)$$

$$\sigma_{p_{T}} = 2.75 (6.1\%)$$

 \blacksquare Unmatchable jets have a broad P_{\top} distribution

 \blacksquare P_T filter only removes 45.7% of unm. jets in embedding and 76.9% of unm. data jets

MPT

Validation of the missing p_T direction

- 66.4% events with $\Delta \phi$ <0.1 σ_{ϕ} = 0.33
- Entries in the corners need to be shifted by 2π

MET control plots

