SoCks

A Build Framework
for Heterogeneous
High Performance
System-on-Chips

Marvin Fuchs, Lukas Scheller,
Timo Muscheid, Oliver Sander,
& Luis Ardila-Perez

4th CERN SoC Workshop

AT

Heterogeneous High Performance System-on-Chips

2

FPGA Fabric

Processors

e.g. to provide <
a user interface

e.g. for parallel real- <
time data processing

05/11/25

Marvin Fuchs - SoCks

4x Arm Cortex-A5 @ Platform @ High-Spee
Application Processor Management Unit Connectivity

2x Arm Cortex-R ' System Functlons General 9
Real-Time Processor Connectivity

Lookup Tables D Block RAM D H'gh's"’?‘?s
Connectivity

Digitgl Signall @ UltraRAM @ Genergl_
Processing Engines Connectivity

AMD Zynq UltraScale+ MPSoC

A

USB, SATA, PCle,

Ethernet, ...

12C, SPI, UART,
SD/eMMC, ...

USB, SATA, PCle,

Ethernet, ...

12C, SPI, UART,
SD/eMMC, ...

KIT

How to build an image for an AMD ZyngMP device?

Vivado:

= FPGA firmware development AM D a

= Low-level SoC configuration

Vitie Vivado

= High-level development environment AM D n
= Bare metal software, HLS, Al, ... Vitis
PetalLinux:

= Entry level Linux OS development AMD PetaLinux Tools

- Based On YOCtO https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetalLinux

Yocto: Ct

= Advanced Linux OS development yo O :
= Recommended for production PROJECT

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto

KIT

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux

How to build an image for an AMD ZyngMP device?

Vivado:

= FPGA firmware development AM D n

= Low-level SoC configuration

- Vivado

Vitis: B M D ‘

= High-level development environment ‘

= Bare metal software, HLS, Al, ... Vitis

PetaLinux is being discontinued, and AMD will instead focus on supporting the Yocto workflow!

(https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2907766785/Y octo+Project+Machine+Configuration+Support#PetalL inux-Relationship-to-Yocto-Project)

Yocto: Ct
. o

= Advanced Linux OS development yo o

= Recommended for production PROJECT

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto

KIT

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2907766785/Yocto+Project+Machine+Configuration+Support#PetaLinux-Relationship-to-Yocto-Project

How to build images for such SoCs in general?

Two widely used frameworks with similar
advantages and disadvantages

poventages yocto :

= Well established frameworks
= Supported by manufacturer PROJECT

Disadvantages:

= Frameworks for building Linux distribution

= Flat hierarchy of hundreds of components =
= Training is time consuming 1ng m edded
= Hard to manage over time

Ea\@c@

Linux Easy

KIT

The Downside of the Yocto Approach

(f (7
I\ ‘

-

W

: 1 —A /
A2\
ZXA

I
‘} 01 I
\/ TR
\
‘\‘I
N
'\\ N \
‘ \
‘ \ RN
| \ N =
INAURRN AN \
\ \ \Q
N If
\ NIV
N
\ ‘F N
L[|INN NS \
N v
“Q,& ihivan N
W
N I {
1 ! T——
T‘\ { — A=
}\A\\.}‘ A\ ‘\\”;i QAN \\\\l (W ‘

-=

=i

WL S

TN

—_——

1

x\w —

Dependencies of a complet

CD

yocto

PROJECT

I MU RAR I |
‘ WA |
I fil
(il \
(AR A
M I (\‘
/)
W g L "\‘ |
/ 1 MR A
f/ I \
| I
I
f 1
a I
‘l"/L‘ / “r‘
; !
il
i
‘/‘
0
= [l
,,“ ‘ ‘
i 2 W

AMD Zyng US+ image in Yocto

KIT

The Downside of the Yocto Approach

~ 300 recipes to build the full image

KIT

The Downside of the Yocto Approach

yocto-

PROJECT

L

|

/
|

Dependencies of the Linux Kernel recipe in yocto

KIT

The Downside of the Yocto Approach

yocto-

PROJECT

L

|

/
|

N

Dependencies of the Linux Kernel recipe in yocto

KIT

The Downside of the Yocto Approach

Simple requirements to build the Kernel ...
1. Kernel Sources

2. Toolchain (Compiler, ...)

3. Additional tools (tar, cpio, ...)

... but yocto uses
~ 70 recipes to build the Kernel

KIT

The Downside of the Yocto Approach

Simple requirements to build the Kernel ...
1. Kernel Sources

2. Toolchain (Compiler, ...)

3. Additional tools (tar, cpio, ...)

... but yocto uses
~ 70 recipes to build the Kernel

How could a simpler approach look like?

KIT

SoCks (SoC Blocks)

Obijectives:

Reduced complexity

Easy to learn and use

Fast and reliable

Simple debugging of projects

Full compatibility with GitLab CI/CD
Encourage reuse of software and firmware

ldeas:

Divide and conquer
Introduce a new abstraction layer (blocks)
Use existing Linux distributions

KIT

SoCks (SoC Blocks)

Objectives:

= Reduced complexity

= Easy to learn and use

= Fast and reliable

= Simple debugging of projects

= Full compatibility with GitLab CI/CD

= Encourage reuse of software and firmware

Ideas:

= Divide and conquer

= Introduce a new abstraction layer (blocks)
= Use existing Linux distributions

ZyngMP
Boot Image

Second
Stage Boot
Loader
(SSBL)

ARM Trusted
Firmware
(ATF)

Devicetree

Platform
Management
Unit (PMU)
Firmware

First Stage
Boot Loader
(FSBL)

KIT

SoCks (SoC Blocks)

Obijectives:

Reduced complexity

Easy to learn and use

Fast and reliable

Simple debugging of projects

Full compatibility with GitLab CI/CD
Encourage reuse of software and firmware

ldeas:

Divide and conquer
Introduce a new abstraction layer (blocks)
Use existing Linux distributions

~ 300 recipes in yocto

~ 10 blocks in SoCks

KIT

SoCks Software and Firmware Image

Image:
= Composed of reusable blocks
= Clear interfaces between blocks

= Blocks can be built independently Optional Blocks Complete Image

/N /

ARM Trusted

. RAM Root ZynqMP
Fnz?_r_\::a;re File System @ File System @ Boot Image

SoC base configuration
and FPGA bitfile

\ First Stage Second Platform
Vivado Boot Loader Stigg dP;(:Ot MS:;?S&‘ET)“
(FSBL)

(SSBL) Firmware

Devicetree

15 05/11/25 Marvin Fuchs - SoCks ﬂ(IT

SoCks Software and Firmware Image

Builder:

Builds one version of the block
Multiple builders per block available
Select one builder per block

)
OS‘J

A
AlmaLinux

G

o

atpine

2.

ubuntu

%

e’
AlmaLinux

RootFS

KIT

SoCks Software and Firmware Image

SE—
P
Builder: AlmaLinux
= Builds one version of the block

= Multiple builders per block available

= Select one builder per block

£

debian AlmaLinux

rootfs:
source: build
builder: ZyngMP_AlmalLinux_RootFS_Builder
project:
release: 9
addl_pkgs: ["python3", "nano", "rsync", "git"]

RootFS

users: UbUﬂtU
- name: root

pw_hash: 1X6DWcY5/$GQ3ZFNgCGx0SgOZMT6Bkcl
dependencies:

kernel: temp/kernel/output/bp_kernel_*.tar.gz

container:
image: alma9-rootfs-builder-alma9
tag: socks

octo -

PROJECT

RoOOtFS section in project.yml \ oneof J

KIT

SoCks Software and Firmware Image

SE—
&
Builder: AlmaLinux
= Builds one version of the block

= Multiple builders per block available

= Select one builder per block

<

dL‘)
debian AlmaLinux

rootfs:
source: build

builder: ZyngMP_AlmalLinux_RootFS_Builder
project:

release: 9 RootFS
addl_pkgs: ["python3", "nano", "rsync", "git"]
users: UbUﬂtU
— name: root
pw_hash: 1X6DWcY5/$GQ3ZFNgCGx0SgOZMT6Bkcl
dependencies:

kernel: temp/kernel/output/bp_kernel_x*.tar.gz The need to use a “standard” RootFS was already

container: discussed at the first CERN SoC workshop.

image : alma9-rootfs-builder-almag https://indico.cern.ch/event/799275/contributions/3413739/attachments/1861393/
tag: socks 3059655/workshop_presentation.pdf

RoOOtFS section in project.yml k one of)

KIT

https://indico.cern.ch/event/799275/contributions/3413739/attachments/1861393/3059655/workshop_presentation.pdf

SoCks Software and Firmware Image

19

05/11/25

ARM Trusted
Firmware
(ATF)

Marvin Fuchs - SoCks

RAM Root
File System J File System

Second Platform
Stage Boot | Management
Loader Unit (PMU)
(SSBL) Firmware

First Stage
Boot Loader
(FSBL)

Layout of an AMD Zynq US+ image

ZyngMP
Boot Image

Devicetree

KIT

SoCks Software and Firmware Image

) | (3| A | (2
BUSYBOX AlmaLinux
ATF Kernel RAMFS Boot Image
AM D devicetree

Vivado FSBL Devicetree

AMD

Example of a configured AMD Zyng US+ image

KIT

How is a block built?

Building the Linux Kernel e
with SoCks: @%
build container
Shell Command:
$ socks kernel build iT
>
‘) - — N
general resulting block
source files builder package

KIT

How is a block built?

Building the Devicetree
with SoCKks:

Shell Command:
$ socks devicetree build

general
source files

prOject
source files

S

block packages
of other blocks

e

build container

builder

—> N
resulting block
package

KIT

How is a block built?

Building the Devicetree

e

©

with SoCks:
general build container

Shell Command: source files

$ socks devicetree build lT

Supported container tools: épmject \ ;L\IC —_— -

= Docker source files -

= Podman devicetree resulting block
bui package
uilder

= None '$
N
Tested host systems: .a’

. block packages
Ubuntu 24.04 LTS of other blocks
= AlmaLinux 8

KIT

How are multiple blocks built?

Building a Complete Image
with SoCks:

Shell Command:
$ socks all build

= Sequential building of blocks,
internal parallelization

= Processing sequence is
determined by dependencies

Boot Image

BUSYBOX

RAMFS

Kernel

Devicetree

Vivado

KIT

Build Performance - Complete Images

= Equivalent Yocto and SoCks
projects
= Linux OS files system has major
Influence on build time w-
= SoCKks is fast in building
complete images
- Only with a Yocto file system
SoCks is slower than Yocto
- S0CKs uses Yocto internally
to create the Yocto file system
= Container images are only built
If they do not already exist Yocto Honister Debian 12 AlmaLinux 9

File System Used

50 A [Yocto WM SoCks w/o existing container images SoCks w/ existing container images

41.8

36.5

w
o
1

25.2 24.5

20.3 19.7

Build Time [minutes]

N
o
1

104

Test image: ZCU102 Test system: Intel Core 19 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD

KIT

Build Performance - OS File System Comparison

= All file systems in this test were
built with SoCks

= Yocto is the most demanding
because it is built from source

= All other file systems are built
from official binary packages

= Yocto and Alpine Linux images
are very similar in size

Build Time [minutes]

21.59
20.46
20 A T
15 A
10 4
5 4

Test image: ZCU102

Yocto Honister (2022.2) w bc
Yocto Honister (2022.2) w/o bc
Ubuntu 24.04 w bc

Ubuntu 24.04 w/o bc

B Debian 13 w bc

Debian 13 w/o bc
B Almalinux 9 w bc
AlmaLinux 9 w/o bc
Bl Alpine Linux 3.22 w bc
[Alpine Linux 3.22 w/o bc

3.31

0.24 0.16

Test system: Intel Core 19 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD

KIT

Build Performance - Rebuild

= SoCKks is fast at building

components and images after 60
source code modifications i Yocto (fullImage) Yocto (Recipc) WM SoCks (Full Image) S0Cks (Block)
. 48.6
= Only one line of code was s01 488

changed for the measurements
- Value of a variable toggled

= Devicetree modifications are
particularly relevant in practice

39.5

40 A

32.4

30

Build Time [seconds]

201 16.9

10 4

AMD Linux Kernel AMD U-Boot AMD Devicetree

Test image: ZCU102 Test system: Intel Core 19 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD

KIT

Supported SoC Architectures

SoCks is currently mainly used at KIT
Various devices have already been tested
Most advanced for AMD Zyng US+
Raspberry Pi for demonstration purposes

AMD Zyng US+ AMD Versal Raspberry Pi
Kria K26 SoM VEK280 Al Edge Eval. Kit Raspberry Pi 4B
ZCU102 MPSoC Eval. Kit Raspberry Pi 5

ZCU208 RFSoC Eval. Kit

ZCU216 RFSoC Eval. Kit

DTS-100G (custom)

Current usage at CERN: AMD Kria K26

iIWave iW-RainboW-G42M SoM

SoM on Serenity-S

KIT

Supported SoC Architectures

SoCks is currently mainly used at KIT
Various devices have already been tested
Most advanced for AMD Zyng US+
Raspberry Pi for demonstration purposes

AMD Zynq US+ AMD Versal Raspberry Pi Full network boot (incl. BOOT.BIN)
:)) SD card boot option

Kria K26 SoM VEK280 Al Edge Eval. Kit Raspberry Pi 4B AlmaLinux

ZCU102 MPSoC Eval. Kit Raspberry Pi 5 | - Layered RootFS

CERN user accounts

ZCU208 RFSoC Eval. Kit

ZCU216 RFSoC Eval. Kit

DTS-100G (custom)

Current usage at CERN: AMD Kria K26

iIWave iW-RainboW-G42M SoM

SoM on Serenity-S

KIT

Conclusion

= So0Cks is a lightweight framework to build SoC images
= Containerized builds

= Modular and expandable
_ _ AMD
= Fully compatible to GitLab CI/CD Boot Image

= Can replace PetaLinux in many cases !

SoCks is open source!

= https://github.com/kit-ipe/SoCks a
= https://arxiv.org/abs/2510.15910 vy

Vivado

KIT

https://github.com/kit-ipe/SoCks
https://arxiv.org/abs/2510.15910

Backup

Overview of Builders Currently Available in SoCks

H ﬁ

£ O |

% AlmalLinux

)) a N\ ™

IPBB a @ @
BUSYBOX LQLPiﬂ.e)\ debian |
S ’ N/) ‘
) AMD AMD dewcetree U-Boot \ L y LUbUI’\l’.UJ AMD

Vivado Proj. FSBL PMU FW Devicetree SSBL Kernel RAMFS RootFS Boot Image

KIT

Build Performance - Individual Blocks of a SoCks Image

= The Vivado project has the
longest building time
- Depends heavily on the
Vivado project Excluding

B ATF (ARM AMD)
EEm SSBL (U-Boot AMD)
B Vivado (logicc)

E : Emm FSBL (AMD)
ontainer s PMU FW (AMD)
u The ROOtFS Of the OS haS the Build Devicetree (AMD)
. . . B Kernel (Linux AMD)
second longest building time s ROOLFS (Debian 12)
@ Boot Image (AMD)

- Depends heavily on the
distribution/framework
= The Linux kernel has the third Aneluding
longest building time e
- Depends heavily on the
kernel configuration 0 5 10 15 20 25 30

Build Time [minutes]

Test image: ZCU102 Test system: Intel Core 19 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD

34 05/11/25 Marvin Fuchs - SoCks ﬂ(IT

CPU Utilization During a Vivado Project Build

utilization (%)

100 A
Synth
80 1
60 1

40 A

20 1

CPU Usage (Marvin's Laptop)

SIS

Mostly single core

\

"

6 160 260 360 460 560 660 760
time (s)
Project: Vivado project A
Test system: Lenovo ThinkPad P14s Gen 2a, AMD

Ryzen 7 PRO 5850U, 32 GB of DDR4 memory, 1 TB
SK Hynix HFSO01TDE9X081N SSD

Synthesis

utilization (%)

100 A

80 1

60

40 A

20 A

\ CPU Usage (Workstation)

N

Mostly single core

/

|

6 10b0 2600 3050 40b0 SObO 6600
time (s)
Project: Vivado project B
Test system: Intel Core i9 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD

KIT

