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Heterogeneous High Performance System-on-Chips
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How to build an image for an AMD ZyngMP device?

Vivado:

= FPGA firmware development AM D a

= Low-level SoC configuration

Vitie Vivado

= High-level development environment AM D n
= Bare metal software, HLS, Al, ... Vitis
PetalLinux:

= Entry level Linux OS development AMD PetaLinux Tools

- Based On YOCtO https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetalLinux

Yocto: Ct

= Advanced Linux OS development yo O :
= Recommended for production PROJECT

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
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How to build an image for an AMD ZyngMP device?

Vivado:

= FPGA firmware development AM D n

= Low-level SoC configuration

- Vivado

Vitis: B M D ‘

= High-level development environment ‘

= Bare metal software, HLS, Al, ... Vitis

PetaLinux is being discontinued, and AMD will instead focus on supporting the Yocto workflow!

(https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2907766785/Y octo+Project+Machine+Configuration+Support#PetalL inux-Relationship-to-Yocto-Project)

Yocto: Ct
. o

= Advanced Linux OS development yo o

= Recommended for production PROJECT

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
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How to build images for such SoCs in general?

Two widely used frameworks with similar
advantages and disadvantages

poventages yocto :

= Well established frameworks
= Supported by manufacturer PROJECT

Disadvantages:

= Frameworks for building Linux distribution

= Flat hierarchy of hundreds of components =
= Training is time consuming 1ng m edded
= Hard to manage over time

Ea\@c@

Linux Easy

KIT



The Downside of the Yocto Approach
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AMD Zyng US+ image in Yocto
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The Downside of the Yocto Approach

~ 300 recipes to build the full image
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The Downside of the Yocto Approach
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Dependencies of the Linux Kernel recipe in yocto
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Dependencies of the Linux Kernel recipe in yocto
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The Downside of the Yocto Approach

Simple requirements to build the Kernel ...
1. Kernel Sources

2. Toolchain (Compiler, ...)

3. Additional tools (tar, cpio, ...)

... but yocto uses
~ 70 recipes to build the Kernel
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The Downside of the Yocto Approach

Simple requirements to build the Kernel ...
1. Kernel Sources

2. Toolchain (Compiler, ...)

3. Additional tools (tar, cpio, ...)

... but yocto uses
~ 70 recipes to build the Kernel

How could a simpler approach look like?

KIT



SoCks (SoC Blocks)

Obijectives:

Reduced complexity

Easy to learn and use

Fast and reliable

Simple debugging of projects

Full compatibility with GitLab CI/CD
Encourage reuse of software and firmware

ldeas:

Divide and conquer
Introduce a new abstraction layer (blocks)
Use existing Linux distributions
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SoCks (SoC Blocks)

Objectives:

= Reduced complexity

= Easy to learn and use

= Fast and reliable

= Simple debugging of projects

= Full compatibility with GitLab CI/CD

= Encourage reuse of software and firmware

Ideas:

= Divide and conquer

= Introduce a new abstraction layer (blocks)
= Use existing Linux distributions

ZyngMP
Boot Image

Second
Stage Boot
Loader
(SSBL)

ARM Trusted
Firmware
(ATF)

Devicetree

Platform
Management
Unit (PMU)
Firmware

First Stage
Boot Loader
(FSBL)
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SoCks (SoC Blocks)

Obijectives:

Reduced complexity

Easy to learn and use

Fast and reliable

Simple debugging of projects

Full compatibility with GitLab CI/CD
Encourage reuse of software and firmware

ldeas:

Divide and conquer
Introduce a new abstraction layer (blocks)
Use existing Linux distributions

~ 300 recipes in yocto

~ 10 blocks in SoCks
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SoCks Software and Firmware Image

Image:
= Composed of reusable blocks
= Clear interfaces between blocks

= Blocks can be built independently Optional Blocks Complete Image

/N /

ARM Trusted

. RAM Root ZynqMP
Fnz?_r_\::a;re File System @ File System @ Boot Image

SoC base configuration
and FPGA bitfile

\ First Stage Second Platform
Vivado Boot Loader Stigg dP;(:Ot MS:;?S&‘ET)“
(FSBL)

(SSBL) Firmware

Devicetree
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SoCks Software and Firmware Image

Builder:

Builds one version of the block
Multiple builders per block available
Select one builder per block

)
OS‘J

A
AlmaLinux

G

o

atpine

2.

ubuntu

%

e’
AlmaLinux

RootFS
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SoCks Software and Firmware Image

SE—
P
Builder: AlmaLinux
= Builds one version of the block

= Multiple builders per block available

= Select one builder per block

£

debian AlmaLinux

rootfs:
source: build
builder: ZyngMP_AlmalLinux_RootFS_Builder
project:
release: 9
addl_pkgs: ["python3", "nano", "rsync", "git"]

RootFS

users: UbUﬂtU
- name: root

pw_hash: $1$X6DWcY5/$GQ3ZFNgCGx0SgOZMT6Bkcl
dependencies:

kernel: temp/kernel/output/bp_kernel_*.tar.gz

container:
image: alma9-rootfs-builder-alma9
tag: socks

octo -

PROJECT

RoOOtFS section in project.yml \ oneof J
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SoCks Software and Firmware Image

SE—
&
Builder: AlmaLinux
= Builds one version of the block

= Multiple builders per block available

= Select one builder per block

<

dL‘)
debian AlmaLinux

rootfs:
source: build

builder: ZyngMP_AlmalLinux_RootFS_Builder
project:

release: 9 RootFS
addl_pkgs: ["python3", "nano", "rsync", "git"]
users: UbUﬂtU
— name: root
pw_hash: $1$X6DWcY5/$GQ3ZFNgCGx0SgOZMT6Bkcl
dependencies:

kernel: temp/kernel/output/bp_kernel_x*.tar.gz The need to use a “standard” RootFS was already

container: discussed at the first CERN SoC workshop.

image : alma9-rootfs-builder-almag https://indico.cern.ch/event/799275/contributions/3413739/attachments/1861393/
tag: socks 3059655/workshop_presentation.pdf

RoOOtFS section in project.yml k one of )
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SoCks Software and Firmware Image

19
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ARM Trusted
Firmware
(ATF)

Marvin Fuchs - SoCks

RAM Root
File System J File System

Second Platform
Stage Boot | Management
Loader Unit (PMU)
(SSBL) Firmware

First Stage
Boot Loader
(FSBL)

Layout of an AMD Zynq US+ image

ZyngMP
Boot Image

Devicetree
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SoCks Software and Firmware Image

) | (3| A | (2
BUSYBOX AlmaLinux
ATF Kernel RAMFS Boot Image
AM D devicetree

Vivado FSBL Devicetree

AMD

Example of a configured AMD Zyng US+ image
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How is a block built?

Building the Linux Kernel e
with SoCks: @%
build container
Shell Command:
$ socks kernel build iT
>
‘) - — N
general resulting block
source files builder package

KIT



How is a block built?

Building the Devicetree
with SoCKks:

Shell Command:
$ socks devicetree build

general
source files

prOject
source files

S

block packages
of other blocks

e

build container

builder

—> N
resulting block
package

KIT



How is a block built?

Building the Devicetree

e

©

with SoCks:
general build container

Shell Command: source files

$ socks devicetree build lT

Supported container tools: épmject \ ;L\IC —_— -

= Docker source files -

= Podman devicetree resulting block
bui package
uilder

= None '$
N
Tested host systems: .a’

. block packages
Ubuntu 24.04 LTS of other blocks
= AlmaLinux 8

KIT



How are multiple blocks built?

Building a Complete Image
with SoCks:

Shell Command:
$ socks all build

= Sequential building of blocks,
internal parallelization

= Processing sequence is
determined by dependencies

Boot Image

BUSYBOX

RAMFS

Kernel

Devicetree

Vivado

KIT



Build Performance - Complete Images

= Equivalent Yocto and SoCks
projects
= Linux OS files system has major
Influence on build time w-
= SoCKks is fast in building
complete images
- Only with a Yocto file system
SoCks is slower than Yocto
- S0CKs uses Yocto internally
to create the Yocto file system
= Container images are only built
If they do not already exist Yocto Honister Debian 12 AlmaLinux 9

File System Used

50 A [ Yocto WM SoCks w/o existing container images SoCks w/ existing container images

41.8

36.5

w
o
1

25.2 24.5

20.3 19.7

Build Time [minutes]

N
o
1

104

Test image: ZCU102 Test system: Intel Core 19 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD
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Build Performance - OS File System Comparison

= All file systems in this test were
built with SoCks

= Yocto is the most demanding
because it is built from source

= All other file systems are built
from official binary packages

= Yocto and Alpine Linux images
are very similar in size

Build Time [minutes]

21.59
20.46
20 A T
15 A
10 4
5 4

Test image: ZCU102

Yocto Honister (2022.2) w bc
Yocto Honister (2022.2) w/o bc
Ubuntu 24.04 w bc

Ubuntu 24.04 w/o bc

B Debian 13 w bc

Debian 13 w/o bc
B Almalinux 9 w bc
AlmaLinux 9 w/o bc
Bl Alpine Linux 3.22 w bc
[ Alpine Linux 3.22 w/o bc

3.31

0.24 0.16

Test system: Intel Core 19 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD
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Build Performance - Rebuild

= SoCKks is fast at building

components and images after 60
source code modifications i Yocto (fullImage) Yocto (Recipc) WM SoCks (Full Image) S0Cks (Block)
. 48.6
= Only one line of code was s01 488

changed for the measurements
- Value of a variable toggled

= Devicetree modifications are
particularly relevant in practice

39.5

40 A

32.4

30

Build Time [seconds]

201 16.9

10 4

AMD Linux Kernel AMD U-Boot AMD Devicetree

Test image: ZCU102 Test system: Intel Core 19 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD

KIT



Supported SoC Architectures

SoCks is currently mainly used at KIT
Various devices have already been tested
Most advanced for AMD Zyng US+
Raspberry Pi for demonstration purposes

AMD Zyng US+ AMD Versal Raspberry Pi
Kria K26 SoM VEK280 Al Edge Eval. Kit  Raspberry Pi 4B
ZCU102 MPSoC Eval. Kit Raspberry Pi 5

ZCU208 RFSoC Eval. Kit

ZCU216 RFSoC Eval. Kit

DTS-100G (custom)

Current usage at CERN: AMD Kria K26

iIWave iW-RainboW-G42M SoM

SoM on Serenity-S

KIT



Supported SoC Architectures

SoCks is currently mainly used at KIT
Various devices have already been tested
Most advanced for AMD Zyng US+
Raspberry Pi for demonstration purposes

AMD Zynq US+ AMD Versal Raspberry Pi Full network boot (incl. BOOT.BIN)
: ) ) SD card boot option

Kria K26 SoM VEK280 Al Edge Eval. Kit  Raspberry Pi 4B AlmaLinux

ZCU102 MPSoC Eval. Kit Raspberry Pi 5 | - Layered RootFS

CERN user accounts

ZCU208 RFSoC Eval. Kit

ZCU216 RFSoC Eval. Kit

DTS-100G (custom)

Current usage at CERN: AMD Kria K26

iIWave iW-RainboW-G42M SoM

SoM on Serenity-S
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Conclusion

= So0Cks is a lightweight framework to build SoC images
= Containerized builds

= Modular and expandable
_ _ AMD
= Fully compatible to GitLab CI/CD Boot Image

= Can replace PetaLinux in many cases !

SoCks is open source!

= https://github.com/kit-ipe/SoCks a
= https://arxiv.org/abs/2510.15910 vy

Vivado

KIT
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Overview of Builders Currently Available in SoCks

H ﬁ

£ O |

% AlmalLinux

) ) a N\ ™

IPBB a @ @
BUSYBOX LQLPiﬂ.e )\ debian |
S ’ N/ ) ‘
) AMD AMD dewcetree U-Boot \ L y LUbUI’\l’.UJ AMD

Vivado Proj. FSBL PMU FW Devicetree SSBL Kernel RAMFS RootFS Boot Image
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Build Performance - Individual Blocks of a SoCks Image

= The Vivado project has the
longest building time
- Depends heavily on the
Vivado project Excluding

B ATF (ARM AMD)
EEm SSBL (U-Boot AMD)
B Vivado (logicc)

E : Emm FSBL (AMD)
ontainer s PMU FW (AMD)
u The ROOtFS Of the OS haS the Build Devicetree (AMD)
. . . B Kernel (Linux AMD)
second longest building time s ROOLFS (Debian 12)
@ Boot Image (AMD)

- Depends heavily on the
distribution/framework
= The Linux kernel has the third Aneluding
longest building time e
- Depends heavily on the
kernel configuration 0 5 10 15 20 25 30

Build Time [minutes]

Test image: ZCU102 Test system: Intel Core 19 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD
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CPU Utilization During a Vivado Project Build

utilization (%)

100 A
Synth
80 1
60 1

40 A

20 1

CPU Usage (Marvin's Laptop)

SIS

Mostly single core

\

"

6 160 260 360 460 560 660 760
time (s)
Project: Vivado project A
Test system: Lenovo ThinkPad P14s Gen 2a, AMD

Ryzen 7 PRO 5850U, 32 GB of DDR4 memory, 1 TB
SK Hynix HFSO01TDE9X081N SSD

Synthesis

utilization (%)

100 A

80 1

60

40 A

20 A

\ CPU Usage (Workstation)

N

Mostly single core

/

|

6 10b0 2600 3050 40b0 SObO 6600
time (s)
Project: Vivado project B
Test system: Intel Core i9 14900K, 128 GB of DDR5
memory, 2 TB Samsung 990 EVO NVMe SSD
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