Rare Higgs Decay at the FCCee:

 $H \rightarrow aa \rightarrow 4K$

Sarah Alshamaily

ETP — Institute for Experimental Particle Physics Karlsruhe Institute of Technology

October 23, 2025

Goal

• Feasibility study to determine the measurement of this rare Higgs decay

ETP – Institute for Experimental Particle Physics

Goal

• Feasibility study to determine the measurement of this rare Higgs decay

Motivation

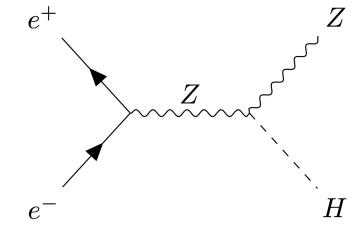
• Exploring new parameter space with the specific chosen signal process at 240 GeV centre-of-mass energy

<u>Goal</u>

• Feasibility study to determine the measurement of this rare Higgs decay

Motivation

- Exploring new parameter space with the specific chosen signal process at 240 GeV centre-of-mass energy
 - Interesting since this study has not been done before



Processes

One signal (500,000 events)

- ee \rightarrow Z \rightarrow ZH
 - $Z \rightarrow ee$
 - $H \rightarrow aa$
 - aa \rightarrow 4 K+

"p8_ee_eeH_Hpsps_ecm240"

Processes

Three backgrounds

• ee \rightarrow WW (~ 3.7 * 10⁸ events)

"p8_ee_WW_ecm240"

• ee \rightarrow ZZ (~5.6 * 10⁷ events)

"p8_ee_ZZ_ecm240"

• ee \rightarrow Zqq (~ 1 * 10⁸ events)

"p8_ee_Zqq_ecm240"

Sample generation

Signal events are generated with Delphes+Pythia8

ETP – Institute for Experimental Particle Physics

Sample generation

- Signal events are generated with Delphes+Pythia8
- Definition of new pseudo-scalar from Pythia card
 - spin type: 0
 - Nominal mass: 1.5 GeV
 - Γ_{BW} : 1.9732 * 10⁻¹² GeV (very prompt)

```
! Definition of new pseudoscalar
9000006:all = ps psbar 0 0 0 1.5 1.9732e-12 1.0 75.0 0
9000006:oneChannel = 2 1.000 101 321 -321
9000006:mayDecay = on
9000006:isResonance = on
9000006:onMode = off
9000006:onIfAny = 321
```

• One decay channel \rightarrow 2 charged kaons \rightarrow 100%

Analysis

Reconstruction of the Higgs

- Filtered out events that did not have exactly 4 kaons
- Individual masses of the 4 kaons were then summed up

Analysis

Reconstruction of the Higgs

- Filtered out events that did not have exactly 4 kaons
- Individual masses of the 4 kaons were then summed up

Reconstruction of the Z

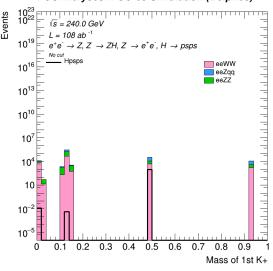
- Filtered out events that did not have exactly 2 electrons
- Individual masses of the 2 electrons were then summed up

Analysis

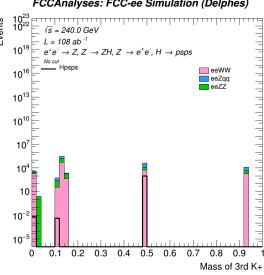
Reconstruction of the Higgs

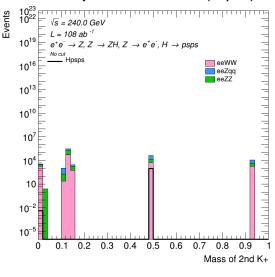
- Filtered out events that did not have exactly 4 kaons
- Individual masses of the 4 kaons were then summed up

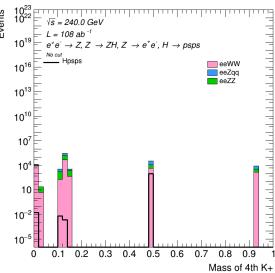
Reconstruction of the Z


- Filtered out events that did not have exactly 2 electrons
- Individual masses of the 2 electrons were then summed up

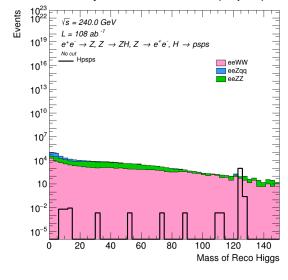
<u>Selections</u>


- $0.2 < K +_{mass} < 0.7 \text{ GeV}$
- $K+_{energy} > 2 \text{ GeV}$
- $H_{mass} > 120 \text{ GeV}$

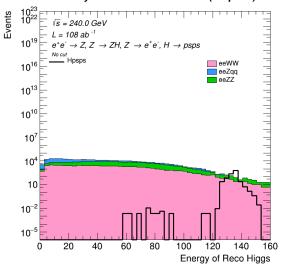

FCCAnalyses: FCC-ee Simulation (Delphes)


FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

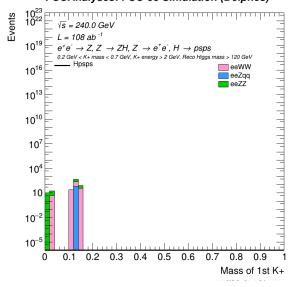


FCCAnalyses: FCC-ee Simulation (Delphes)

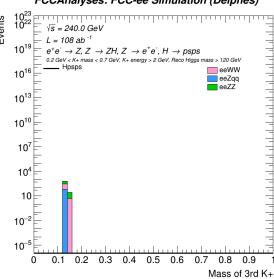


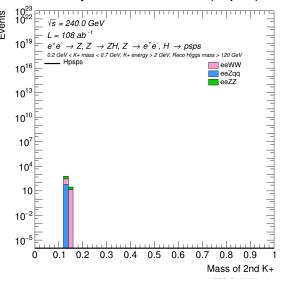
No cut

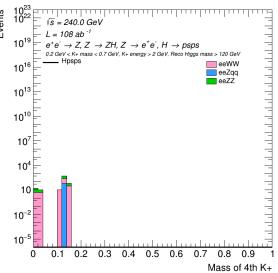
FCCAnalyses: FCC-ee Simulation (Delphes)



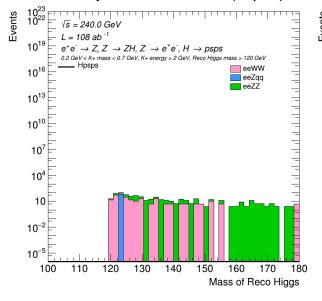
FCCAnalyses: FCC-ee Simulation (Delphes)



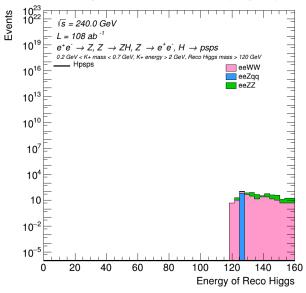

FCCAnalyses: FCC-ee Simulation (Delphes)


FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

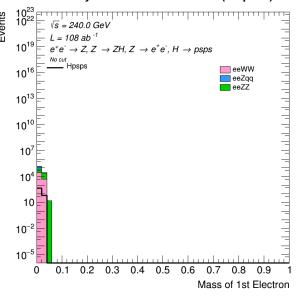


FCCAnalyses: FCC-ee Simulation (Delphes)

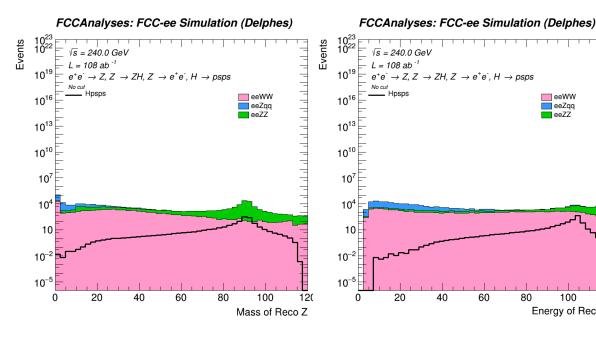


Kinematic cut

FCCAnalyses: FCC-ee Simulation (Delphes)

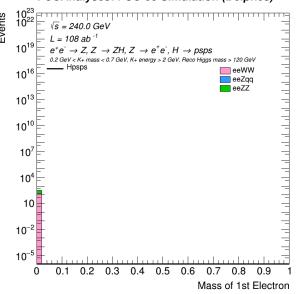


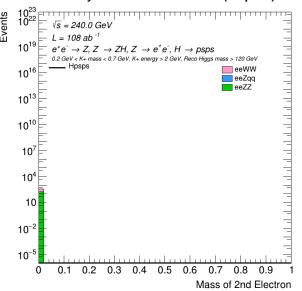
FCCAnalyses: FCC-ee Simulation (Delphes)


FCCAnalyses: FCC-ee Simulation (Delphes)

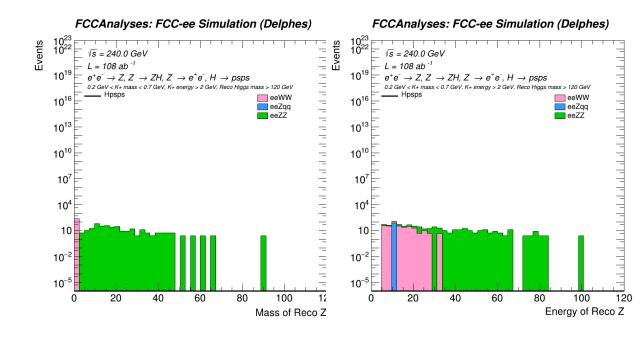
FCCAnalyses: FCC-ee Simulation (Delphes)

No cut




eeZqq eeZZ

100 Energy of Reco Z


FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

Kinematic cut

Next steps

- Add missing energy for the Z
- Increase number of generated sample events using Pythia card
- Include more background processes
- Probe parameter space where ALP is long-lived?

