

Speedup of Extensive Air Shower Simulations with Deep Neural Networks

Marcel Köpke, Dr. Markus Roth CORSIKA Cosmic Ray Simulation Workshop Karlsruhe (2019)

INSTITUTE FOR NUCLEAR PHYSICS (IKP), FACULTY OF PHYSICS KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

Motivation

2

The time complexity of CORSIKA 7 simulations rises approximately linearly with the primary particle energy

Thinning

- Reduces (effective) particle content by particle-aggregation
- Preserves shower properties to leading order
- Reduces shower-to-shower fluctuations

Why Neural Networks?

- Can run on specialized hardware (GPU / TPU)
- Automatic **parallelization** (TensorFlow)
- Reduction to essential features
- Training can fix meta-parameters
- Adjustable accuracy possible

Neural Networks

5

$$y_{1} = w_{11} \cdot x_{1} + w_{12} \cdot x_{2} + w_{13} \cdot x_{3}$$
$$y_{2} = w_{21} \cdot x_{1} + w_{22} \cdot x_{2} + w_{23} \cdot x_{3}$$
$$\vec{y} = w \cdot \vec{x} \ (+\vec{b})$$
$$\vec{f} = a(\vec{y})$$

Combination of linear and non-linear functions

Training via loss function / metric on data pairs $(ec{x},ec{t})$

•
$$L = L(\vec{f}(\vec{x}), \vec{t}) \implies w' = w - \alpha \cdot \nabla_w L$$

Generative Neural Networks

Autoencoder

6

Problem: Explicit definition of metric

20.06.2019 Marcel Köpke: Speedup of Extensive Air Shower Simulations with Deep Neural Networks

Institute for Nuclear Physics (IKP), Faculty of Physics Karlsruhe Institute of Technology (KIT)

Generative Neural Networks

Adversarial Neural Network

Train discriminator on real (1) and generated (0) data
Train generator to outsmart the discriminator

Fast Implicit Simulation Heuristic

Autoencoder with Adversarial Metric

Simulation Input (SI) can be extended with meta-parameters
Discriminator can be refined with real measurements

Translate to ordinary differential equation (ODE)

$$x_{t+1} = x_t + f(x_t, \theta_t) \implies \frac{dx(t)}{dt} = f(x(t), t, \theta)$$

Solve with standard ODE solver

9

Adapt solver accuracy on the fly (training: high, inference: low)

Working Example [2]

"Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network" - Martin Erdmann, Jonas Glombitza, Thorben Quast – arXiv: 1807.01954

Some Highlights:

- Wasserstein GAN for HEP Geant4 simulations
- Interpolation between training energies
- Up to **x6660 faster** than Geant4
- Runtime is independent of particle energy

Geant4 vs. Wasserstein GAN [2]

Wasserstein GAN:

Integration into CORSIKA 8

Shower library needed for analyses and model training

- Trained model = effective compression of shower library
- Integrate training into CORSIKA 8? \Rightarrow Transmit model updates?

Summary

- Deep Neural Networks can serve as an effective simulation heuristic
- Can improve runtime and (effective) data compression
- Can employ specialized hardware
- Trained models can be conditioned on meta-parameters
- Adjustable accuracy is possible
- ErUM: Innovative Digitale Technologien zur Erforschung von Universum und Materie

References

Title picture: Karlsruhe Castle - Meph666 [CC BY-SA 3.0] https://commons.wikimedia.org/wiki/File:Karlsruhe-Schloss-meph666-2005-Apr-22.jpg

- [1] "Neural Ordinary Differential Equations" Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud – arXiv: 1806.07366
- [2] "Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network" - Martin Erdmann, Jonas Glombitza, Thorben Quast – arXiv: 1807.01954