
Hands-On
CORSIKA 8 by example

Ralf Ulrich

Note

● You can follow the examples and recipes
here to a large degree on your own machine

● Preconditions are a recent linux or Mac
system, or alternatively docker with root
permissions

gitlab.ikp.kit.edu

3

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika

is a free and open site. You can always visit and observe. You may register on the
server to get personalized access to discussions, contributions etc.

If you want to access code via git
 (i.e. git clone git@gitlab.ikp.kit.edu:AirShowerPhysics/corsika.git)
you also need to upload your SSH key beforehand. However, you can always
download code via https directly.

→ personal registration is very useful, in case of problems mail us: there is a whitelist
 of domains to prevent spam, we are happy to include your institution!

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika

Automatic unit testing

Each push on the gitlab server triggers a series of automatic builds and tests,
mostly executed in Mexico.

We always test gcc7 and clang8 debug (-O0) as well as release (-O2) builds.

If tests fail, new code will not be integrated into main development.

There are also special jobs that can be manually triggered to produce doxygen
documentation, coverage reports, sanity checks.

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/pipelines

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/pipelines

docker containers corsika/devel

Set of prepared docker containers to run CORSIKA 8 in several different
Standard configurations. This is also the baseline for the automatic unit testing.

Extremely convenient, but you need root permissions on your system.

Container based distribution will become more important in the future.

Independent gitlab repository with description of containers.
See example applications in README.md in particular:

https://hub.docker.com/r/corsika/devel/tags

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika-docker

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika-docker#importing-the-local-corsika-checkout-into-the-container

https://hub.docker.com/r/corsika/devel/tags
https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika-docker
https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika-docker#importing-the-local-corsika-checkout-into-the-container

Coding guidelines

There are a set of basic coding guidelines (still in development) part of the
repository, see CONTRIBUTING.md

The purely C++ style is defined as .clang-format file. This is enforced
as part of automatic unit testing on gitlab, and you can configure your favorite
editor to follow those rules.

● Code is by definition extremely uniform in style.
● Very easy to further improve starting from where we are now.

Important note to users and developers:
Everything in Framework directory is not intended for normal users. Only
developers have to work here.
For physicists/users is is sufficient to look at the Processes, Setup and
Documentation directories.

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/blob/master/CONTRIBUTING.md
https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/blob/master/.clang-format

Coverage reports

Coverage is determined automatically for each change on the master branch.
Goal: coverage → 100%
Detailed report is available for inspection:
 download coverage build artifact, unpack, open with firefox

Unit testing is in OK state, and can be further improved from here.

Issues, Bugs, Feature requests, Discussions

Link to gitlab

This is the most important
and direct place to contribute

Issues are discussed, worked
on, fixed and lead to progress
of the project

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/issues

Reporting a bug

A bug report must contain all information to reliably reproduce the wrong behavior:

● exact version used
● environment
● any special setup or changes
● Bug behavior
● Expected behavior

And: any bug should trigger the automatic unit testing. If it doesn’t, one of the first
things to do is to add a new test that demonstrates the failure.

Obtain code on your own computer

sudo apt install cmake g++ git

either git clone git@gitlab.ikp.kit.edu:AirShowerPhysics/corsika.git
or git clone https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika.git
or alternatively as packed file from

gitlab.ikp.kit.edu/AirShowerPhysics/corsika website
then: unzip/tar xzvf corsika-master.zip/tar.gz

Prerequisites

or alternatively

Get Code

sudo apt install docker.io

mailto:git@gitlab.ikp.kit.edu
http://gitlab.ikp.kit.edu/AirShowerPhysics/corsika

Compile and run tests

sudo docker run --rm -it -v `pwd`:/corsika/corsika corsika/devel:u-18.04

mkdir build && cd build && cmake ../corsika/corsika

make -j4 && make test

cd corsika
mkdir ../corsika-build
cd ../corsika-build
cmake ../corsika
make -j4 && make test

Either with packages (dependencies) installed on your system

Or via docker container

Simulate air shower

Documentation/Examples/cascade_example

sudo apt-get install gnuplot

../corsika/Tools/plot_tracks.sh tracks.dat

firefox tracks.dat.gif

Now:
open file Documentation/Examples/cascade_example.cc
With your favorite text editor
→ Change parameters → run again

(vertical 4TeV He shower)

cascade_example.cc

Link to cascade_example.cc on gitlab

Look for main parameter section:

Modify, make and run again

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/blob/master/Documentation/Examples/cascade_example.cc

cascade_example.cc

Physics definitions and shower setup:

Documentation – Doxygen

Either run “documentation” step on gitlab server (if you have permissions), then
download the result.

Or locally: install doxygen, and dot, then run make doxygen and look at

 Documentation/Doxygen/html/index.html

This is already very useful for developers, however, it is far from complete.

At this workshop: discuss best options for “developer guide documentation” and
then work towards releasing this end of 2019.

Particle stacks: from idea to reality

Stack: container of data stored (arbitrarily distributed) in memory

StackIterator: points to one single element (particle) on Stack

Stack

begin()
end()

Data 1

Data 2

Fundamental demonstration with single double:
Framework/StackInterface/testStackInterface.cc

Full demonstration with particle data:
Documentation/Examples/stack_example.cc

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/blob/master/Framework/StackInterface/testStackInterface.cc
https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/blob/master/Documentation/Examples/stack_example.cc

Stack(s) in action, e.g. Processes/Sibyll/Decay.cc

Actual Code 06/2019

See also, Thursday

Framework/Cascade/Cascade.h

Framework/Cascade/Cascade.h

Cascade is the place where Tracking, Physics Processes, and
Particle Stacks are linked together to build an air shower cascade.

See Cascade::Run() method.

See Cascade::Step(Particle& vParticle) method.

https://gitlab.ikp.kit.edu/AirShowerPhysics/corsika/blob/master/Framework/Cascade/Cascade.h

Cascade::Step

Discrete processes Continuous processesGeometry

COAST

CORSIKA 8 provides an inverse-COAST interface. This allows to write physics
Code in CORSIKA 8 framework and run it inside CORSIKA 7 for checks/tests.

● You need CORSIKA 7 installed on your computer, and you need to have COAST
● Installed (via one of the dX options in coconut)
● Set COAST_DIR environment variable to CORSIKA 7 directory.
● Re-configure CORSIKA 8 with “cmake -DWITH_COAST=1”
● Edit COAST/COASTProcess.cc, compile with make
● Set COAST_USER_LIB environment variable to location of libCOAST.so

i.e. export COAST_USER_LIB=$PWD/COAST
● re-run CORSIKA 7 coconut, select option d3

→ For technical limitations only ContinuousProcesses can be used here.

Summary

Quick tour through the main infrastructure of the CORSIKA 8 framework.

Some insights into most important functionality and mechanisms.

First impression on how to simulate air showers. Many more details during
the next days.

21

