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Cosmic ray studies with Extensive Air Shower techniques

Standard practice: use the CORSIKA program for EAS simulations

backbone of air shower – hadronic cascade

⇒ hadronic MC event generators
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Disclaimer

current talk: no systematic discussion of the models /
comparison of predictions
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multiple scattering
(many cascades in parallel)

real cascades ⇒ particle production

virtual cascades ⇒ elastic
rescattering (momentum transfer)

generally nonperturbative physics
⇒ phenomenological approaches

But: universal interaction mechanism ⇒ predictive power

different hadrons (nuclei) ⇒ different initial conditions
(parton Fock states) but same mechanism

energy-evolution of the observables (e.g. σtot
pp):

due to a larger phase space for cascades to develop

⇒ smooth energy-dependence for all the observables!!!



Smooth energy-dependence for σtot
pp, Nch

pp, etc.:

well confirmed by collider studies, notably, at LHC

E.g. pre-LHC model predictions and experimental data
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⇒ extrapolation to ultra-high energies – now constrained by
LHC data (within a particular model approach)



Smooth energy-dependence for σtot
pp, Nch

pp, etc.:

well confirmed by collider studies, notably, at LHC

E.g. inelastic cross sections for models tuned to LHC data

[T. Pierog, ISVHECRI-2018]
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NB: N of parameters for hadronization procedures depends on the
degree of sophistication (types of secondary hadrons included, etc.)

optionally, one may use external procedures
(e.g. ISAJET used by SIBYLL & DPMJET)



Phenomenological approaches: “soft” particle production

Involves minimal number of adjustable parameters
(to describe Pomeron exchange eikonal)
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P
(0) ⇒ parton transverse diffusion

Rp characterizes proton size & γp – soft interaction strength

plus 2 parameters for πp (Rπ & γπ ) and 2 more for Kp

generalization for pA & AA collisions – parameter free

NB: additional parameters needed to describe inelastic diffraction
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Alternative: treat hard processes in the RFT framework
(QGSJET, neXus, EPOS)

Phenomenological treatment: ’semihard Pomeron’ [Drescher,
Hladik, SO, Pierog & Werner, Phys. Rep. 350 (2001) 93]

soft Pomerons to describe soft (parts of) cascades (p2
t < Q2

0)

⇒ transverse expansion governed by the Pomeron slope

DGLAP for hard cascades

taken together:
’general Pomeron’

χtot
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0) = χPsoft
pp (s,b)

+ χPsemihard
pp (s,b,Q2

0)

= +

soft Pomeron

QCD ladder

soft Pomeron

apart from the Q0-cutoff, involves 2 more parameters:
to describe parton distributions in the soft Pomeron



Phenomenological approaches: hard processes

’Minijet’ approach: define (mini-)jet production eikonal
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’Minijet’ approach: define (mini-)jet production eikonal
independently of soft processes (DPMJET, SIBYLL)

χhard
pp (s,b,pt,cut) = σjet

pp(s,pt,cut) Opp(b)

σjet
pp(s,pt,cut) = ∑

I ,J=q,q̄,g

Z

pt>pt,cut

dp2
t

Z

dx+ dx−
dσ2→2

IJ (x+x−s,p2
t )

dp2
t

× fI/p(x
+,p2

t,cut) fJ/p(x
−,p2

t,cut)

allows one to use external PDFs fI/p(x,Q2)

but: requires additional assumptions on the overlap function
Opp(b) ⇒ on spacial parton distributions in the proton

NB: Additional differences between the ’semihard Pomeron’ and
’minijet’ approaches arise at particle production level
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sections & ND particle
production
(e.g. higher diffraction
⇒ smaller σinel

pp & longer
multiplicity tails)
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for different combinations of such states, e.g.

σinel
pp (s,b) = ∑

i,j

Ci Cj

Z

d2b
[

1−e−2χtot
pp(ij)(s,b)

]

’semihard Pomeron’: own values γp(i) & R2
p(i) for each state |i〉

’minijet’ approach: one would need partial generalized parton

distributions (GPDs) G(i)
p (x,b,Q2) for all the states
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Phenomenological approaches: nonlinear effects
This signals the need to account for nonlinear interaction effects

When parton density becomes high
(high energy and/or small b):

parton cascades strongly overlap
and interact with each other

⇒ shadowing effects
(slower rise of parton density)

saturation: parton production
compensated by fusion of partonsIn QGSJET-II: Pomeron-Pomeron interactions (scattering of

intermediate partons off the proj./target hadrons & off each other)

(a) (b) (c) (d) (e) (f) (g)

thick lines = Pomerons = ’elementary’ parton cascades

contributions resummed to all orders (sign-altering series)



QGSJET-II-04: consistent description of σtot/el & F2

E.g.,
√

s-dependence of σtot/el
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QGSJET-II-04: consistent description of σtot/el & F2

This is nontrivial, not being related to parton saturation

nonfactorizable graphs:
rescattering off the partner hadrons

have no impact on PDFs &
inclusive particle spectra

but: strongly damp interaction
cross sections

...

...

EPOS model: qualitatively similar approach but based on effective
treatment of lowest order enhanced diagrams

In other models: energy dependent pt-cutoff for jet production,
pt,cut = pt,cut(s)

is it reasonable and what kind of physics is behind?



Phenomenological approaches: higher twist (HT) effects
Any model should respect collinear factorization of pQCD

σjet
pp(s,pt,cut) = ∑

I ,J=q,q̄,g

Z

pt>pt,cut

dp2
t

Z

dx+ dx−
dσ2→2

IJ (x+x−s,p2
t )

dp2
t

× fI/p(x
+,M2

F) fJ/p(x
−,M2

F)

⇒ σjet
pp(s,Q2

0) ∝ 1
Q2

0
s∆eff, ∆eff ≃ 0.3
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Any model should respect collinear factorization of pQCD

σjet
pp(s,pt,cut) = ∑

I ,J=q,q̄,g

Z

pt>pt,cut

dp2
t

Z

dx+ dx−
dσ2→2

IJ (x+x−s,p2
t )
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t

× fI/p(x
+,M2

F) fJ/p(x
−,M2

F)

⇒ σjet
pp(s,Q2

0) ∝ 1
Q2

0
s∆eff, ∆eff ≃ 0.3

with PDFS fI/p(x,Q
2) known from HERA data, no freedom:

dNch/dη|η=0 ∝ σ jet
pp explods at high energies for small Q2

0

in QGSJET-II-04, a rather large value (3 GeV2) is used

with the factorization scale M2
F = p2

t /4, yields pcut
t ≃ 3.4 GeV

but: pQCD should work down to Q0 ∼ 1 GeV?!

ideally, pt-cutoff should be just a technical parameter,
without a strong impact on the results

⇒ some important perturbative mechanism seems missing
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QGSJET-III: phenomenological implementation of the mechanism

with HT effects: dependence on Q0-cutoff strongly reduced
[SO & Bleicher, 2019]

now: twice smaller cutoff for hard processes (Q2
0 = 1.5 GeV2)
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QGSJET-III: phenomenological implementation of the mechanism

with HT effects: dependence on Q0-cutoff strongly reduced
[SO & Bleicher, 2019]

now: twice smaller cutoff for hard processes (Q2
0 = 1.5 GeV2)

Results for air showers: preliminary and close to QGSJET-II-04

e.g. difference for Nµ – at percent level

shower maximum shifted upwards by ≃ 10 g/cm2 at 1019 eV



Phenomenological approaches: higher twist (HT) effects

QGSJET-III: phenomenological implementation of the mechanism

with HT effects: dependence on Q0-cutoff strongly reduced
[SO & Bleicher, 2019]

now: twice smaller cutoff for hard processes (Q2
0 = 1.5 GeV2)

NB: qualitatively, the approach mimics an energy dependent
pt-cutoff for jet production

suppresses emission of jets of moderately small pt

has no impact on PDFs ⇒ not related to parton saturation
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What next?

Current approaches to the treatment of hadronic collisions:
rather involved but largely phenomenological

⇒ no wonder models differ from each other

however: predictions now strongly constrained by LHC data

What about present differences for EAS predictions?

now largely dominated by model differences for pion-air
(kaon-air) collisions [SO & Bleicher, 2016]

NB: extrapolation from pp to π-air and K-air is rather
constrained in a particular approach

is it feasible to discriminate between the approaches?

do some/all models do it right?

current indications from UHECR data:
treatment of pion-air collisions may be deficient
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Interpreting PAO data on Xmax & Xµ
max: not self-consistent

How to change models to ’marry’ Xmax & Xµ
max composition-wise?

[R. Prado, ISVHECRI-2018]

the two sets of data should overlap in terms of 〈lnA〉
for 1≤ A≤ 56!

Acient Greek wisdom may help...

change a model to
modify Xmax prediction:

Xµ
max will move in

the same direction!

or vice versa
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this impacts only the initial stage of EAS development

further cascade development – dominated by pion-air collisions

⇒ parallel up/down
shift of the cascade
profile (same shape)

⇒ same effect on
Xmax and Xµ

max

⇒ not a way to reach a
consistency
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Modifying CR interaction models: which way to go?

Changing the treatment of π−air collisions (’Achilles & Tortoise’)

e.g., σinel
π−air, σdiffr

π−air, K inel
π−air

≡ making special assumptions
concerning the pion structure

affects every step in the
multi-step hadron cascade

⇒ cumulative effect on Xµ
max

but: only the first few steps in
the cascade impact Xmax

after few steps, most of energy
channelled into e/m cascades

⇒ much weaker effect on Xmax



Modifying CR interaction models: which way to go?

E.g., replacing QGSJET-II by the old QGSJET, for π−air collisions

⇒ higher σinel
π−air, larger Nch

π−air & K inel
π−air
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⇒ nearly self-consistent interpretation

NB: higher σinel
π−air & Nch

π−air with current models – very challenging

old QGSJET – outdated; known to overestimate particle
production in π−air collisions

needed: drastic increase of gluon density in pions?!



Outlook

1 Current approaches to the treatment of hadronic collisions:
involved but largely phenomenological

predictions now strongly constrained by LHC data

2 Present differences for EAS predictions:
largely dominated by model differences for pion-air collisions

3 UHECR data indicate serious deficiences in the current
treatments

4 Required modifications of the model predictions: challenging


