Modeling of high energy cosmic ray interactions: selected topics

Sergey Ostapciehko Frankfurt Institute for Advanced Studies

CORSIKA Cosmic Ray Simulation Mickshop Karlsruhe, June 18, 2019

Cosmic ray studies with Extensive Air Shower techniques

Standard practice: use the CORSIKA program for EAS simulations

- backbone of air shower hadronic cascade
- \Rightarrow hadronic MC event generators

List of models available in the CORSIKA EAS simulation code (from T. Pierog, ISVHECRI-2018)

- Which model for CR ? (alphabetical order)
 - DPMJETIII.17-1 by S. Roesler, <u>A. Fedynitch</u>, R. Engel and J. Ranft
 - ➡ EPOS (1.99/LHC) (from VENUS/NEXUS before) by H.J. Drescher, F. Liu,

T. Pierog and K.Werner.

- → QGSJET (01/II-03/II-04/III) by <u>S. Ostapchenko</u> (starting with N. Kalmykov)
- Sibyll (2.1/2.3c) by E-J Ahn, R. Engel, R.S. Fletcher, T.K. Gaisser, P. Lipari, <u>F. Riehn</u>, T. Stanev

CR interaction models

List of models available in the CORSIKA EAS simulation code (from T. Pierog, ISVHECRI-2018)

- Which model for CR ? (alphabetical order)
 - ➡ DPMJETIII.17-1 by S. Roesler, <u>A. Fedynitch</u>, R. Engel and J. Ranft
 - ➡ EPOS (1.99/LHC) (from VENUS/NEXUS before) by H.J. Drescher, F. Liu,

T. Pierog and K.Werner.

- QGSJET (01/II-03/II-04/III) by <u>S. Ostapchenko</u> (starting with N. Kalmykov)
- Sibyll (2.1/2.3c) by E-J Ahn, R. Engel, R.S. Fletcher, T.K. Gaisser, P. Lipari, <u>F. Riehn</u>, T. Stanev

Disclaimer

 current talk: no systematic discussion of the models / comparison of predictions

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering

(many cascades in parallel)

- real cascades ⇒ particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics
 ⇒ phenomenological approaches

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades ⇒ particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics
 ⇒ phenomenological approaches

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades \Rightarrow particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics
 ⇒ phenomenological approaches

But: universal interaction mechanism \Rightarrow predictive power

 different hadrons (nuclei) ⇒ different initial conditions (parton Fock states) but same mechanism

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades \Rightarrow particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics
 ⇒ phenomenological approaches

But: universal interaction mechanism \Rightarrow predictive power

- different hadrons (nuclei) ⇒ different initial conditions (parton Fock states) but same mechanism
- energy-evolution of the observables (e.g. σ^{tot}_{pp}):
 due to a larger phase space for cascades to develop

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades ⇒ particle production
- virtual cascades ⇒ elastic rescattering (momentum transfer)
- generally nonperturbative physics
 ⇒ phenomenological approaches

But: universal interaction mechanism \Rightarrow predictive power

- different hadrons (nuclei) ⇒ different initial conditions (parton Fock states) but same mechanism
- energy-evolution of the observables (e.g. σ^{tot}_{pp}): due to a larger phase space for cascades to develop
- \Rightarrow smooth energy-dependence for all the observables!!!

Smooth energy-dependence for σ_{pp}^{tot} , N_{pp}^{ch} , etc.: well confirmed by collider studies, notably, at LHC

Smooth energy-dependence for σ_{pp}^{tot} , N_{pp}^{ch} , etc.: well confirmed by collider studies, notably, at LHC

- nonperturbative soft (small pt) interactions: successfully treated by Reggeon Field Theory (RFT) [Gribov, 1967]
 - Quark-Gluon String Model [Kaidalov & Ter-Martyrosian, 1982]
 - VENUS MC event generator [Werner, 1993]

- nonperturbative soft (small p_t) interactions: successfully treated by Reggeon Field Theory (RFT) [Gribov, 1967]
 - Quark-Gluon String Model [Kaidalov & Ter-Martyrosian, 1982]
 - VENUS MC event generator [Werner, 1993]
- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

- nonperturbative soft (small p_t) interactions: successfully treated by Reggeon Field Theory (RFT) [Gribov, 1967]
 - Quark-Gluon String Model [Kaidalov & Ter-Martyrosian, 1982]
 - VENUS MC event generator [Werner, 1993]
- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

$$\sigma_{pp}^{\text{tot}}(s,b) = 2 \int d^2 b \left[1 - e^{-\chi_{pp}^{\mathbb{P}}(s,b)} \right]$$

$$\sigma_{pp}^{\text{inel}}(s,b) = \int d^2 b \left[1 - e^{-2\chi_{pp}^{\mathbb{P}}(s,b)} \right]$$

- nonperturbative soft (small p_t) interactions: successfully treated by Reggeon Field Theory (RFT) [Gribov, 1967]
 - Quark-Gluon String Model [Kaidalov & Ter-Martyrosian, 1982]
 - VENUS MC event generator [Werner, 1993]
- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

particle production: hadronization of quark-gluon strings

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal)

$$\chi_{pp}^{\mathbb{P}}(s,b) = \frac{\gamma_p^2 s^{\alpha_{\mathbb{P}}(0)-1}}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s} \exp\left(\frac{-b^2/4}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s}\right)$$

- Pomeron intercept $\alpha_{\mathbb{P}}(0)>1$ \Rightarrow energy rise of parton density
- Pomeron slope $\alpha'_{\mathbb{P}}(0) \Rightarrow$ parton transverse diffusion
- R_p characterizes proton size & γ_p soft interaction strength

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal)

$$\chi_{pp}^{\mathbb{P}}(s,b) = \frac{\gamma_p^2 s^{\alpha_{\mathbb{P}}(0)-1}}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s} \exp\left(\frac{-b^2/4}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s}\right)$$

- Pomeron intercept $\alpha_{\mathbb{P}}(0)>1$ \Rightarrow energy rise of parton density
- Pomeron slope $lpha'_{\mathbb{P}}(0) \Rightarrow$ parton transverse diffusion
- R_p characterizes proton size & γ_p soft interaction strength
- plus 2 parameters for πp (R_{π} & γ_{π}) and 2 more for Kp

- multiple scattering = multi-Pomeron exchanges (multiple parton cascades)
- allows to calculate: cross sections & partial probabilities of final states

Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal)

$$\chi_{pp}^{\mathbb{P}}(s,b) = \frac{\gamma_p^2 s^{\alpha_{\mathbb{P}}(0)-1}}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s} \exp\left(\frac{-b^2/4}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s}\right)$$

- Pomeron intercept $\alpha_{\mathbb{P}}(0)>1$ \Rightarrow energy rise of parton density
- Pomeron slope $lpha'_{\mathbb{P}}(0) \Rightarrow$ parton transverse diffusion
- R_p characterizes proton size & γ_p soft interaction strength
- plus 2 parameters for πp ($R_{\pi} \& \gamma_{\pi}$) and 2 more for Kp
- generalization for pA & AA collisions parameter free

Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal)

$$\chi_{pp}^{\mathbb{P}}(s,b) = \frac{\gamma_p^2 s^{\alpha_{\mathbb{P}}(0)-1}}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s} \exp\left(\frac{-b^2/4}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s}\right)$$

- Pomeron intercept $\alpha_{\mathbb{P}}(0)>1$ \Rightarrow energy rise of parton density
- Pomeron slope $\alpha'_{\mathbb{P}}(0) \Rightarrow$ parton transverse diffusion
- R_p characterizes proton size & γ_p soft interaction strength
- plus 2 parameters for πp (R_{π} & γ_{π}) and 2 more for Kp
- generalization for pA & AA collisions parameter free

NB: N of parameters for hadronization procedures depends on the degree of sophistication (types of secondary hadrons included, etc.)

 optionally, one may use external procedures (e.g. ISAJET used by SIBYLL & DPMJET) Involves minimal number of adjustable parameters (to describe Pomeron exchange eikonal)

$$\chi_{pp}^{\mathbb{P}}(s,b) = \frac{\gamma_p^2 s^{\alpha_{\mathbb{P}}(0)-1}}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s} \exp\left(\frac{-b^2/4}{2R_p^2 + \alpha_{\mathbb{P}}'(0) \ln s}\right)$$

• Pomeron intercept $\alpha_{\mathbb{P}}(0)>1$ \Rightarrow energy rise of parton density

- Pomeron slope $lpha'_{\mathbb{P}}(0) \Rightarrow$ parton transverse diffusion
- R_p characterizes proton size & γ_p soft interaction strength
- plus 2 parameters for πp (R_{π} & γ_{π}) and 2 more for Kp
- generalization for pA & AA collisions parameter free

NB: additional parameters needed to describe inelastic diffraction

• original Gribov's formulation: assuming small parton pt-s

• \Rightarrow no room for high p_t jets?

- original Gribov's formulation: assuming small parton p_t -s
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy (k_t-diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - \Rightarrow loss of predictive power

- original Gribov's formulation: assuming small parton p_t -s
 - \Rightarrow no room for high p_t jets?
- average parton p_t in the cascades should rise with energy $(k_t$ -diffusion)
- \Rightarrow energy-dependent Pomeron intercept $\alpha_{\mathbb{P}}(s)$?
 - ullet \Rightarrow loss of predictive power
- Alternative: treat hard processes in the RFT framework (QGSJET, neXus, EPOS)

 Alternative: treat hard processes in the RFT framework (QGSJET, neXus, EPOS)

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - $\bullet\,\,\Rightarrow\,\, {\rm transverse}$ expansion governed by the Pomeron slope
- DGLAP for hard cascades • taken together: 'general Pomeron' $\chi^{tot}_{pp}(s, b, Q_0^2) = \chi^{\mathbb{P}_{soft}}_{pp}(s, b)$ $+ \chi^{\mathbb{P}_{sominard}}_{pp}(s, b, Q_0^2)$ = + soft Pomeron

 Alternative: treat hard processes in the RFT framework (QGSJET, neXus, EPOS)

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - $\bullet\,\,\Rightarrow\,\, {\rm transverse}$ expansion governed by the Pomeron slope
- DGLAP for hard cascades • taken together: 'general Pomeron' $\chi^{tot}_{pp}(s, b, Q_0^2) = \chi^{\mathbb{P}_{soft}}(s, b)$ $+ \chi^{\mathbb{P}_{seminard}}(s, b, Q_0^2)$ = +

 Alternative: treat hard processes in the RFT framework (QGSJET, neXus, EPOS)

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - $\bullet\,\,\Rightarrow\,\, {\rm transverse}$ expansion governed by the Pomeron slope
- DGLAP for hard cascades • taken together: 'general Pomeron' $\chi_{pp}^{tot}(s, b, Q_0^2) = \chi_{pp}^{\mathbb{P}soft}(s, b)$ $+ \chi_{pp}^{\mathbb{P}seminard}(s, b, Q_0^2)$

 Alternative: treat hard processes in the RFT framework (QGSJET, neXus, EPOS)

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - $\bullet\,\,\Rightarrow\,\, transverse$ expansion governed by the Pomeron slope

'Minijet' approach: define (mini-)jet production eikonal independently of soft processes (DPMJET, SIBYLL)

$$\begin{split} \chi_{pp}^{\text{hard}}(s, b, p_{\text{t,cut}}) &= \sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) \ O_{pp}(b) \\ \sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) &= \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}} > p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \ \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ &\times \ f_{I/p}(x^{+}, p_{\text{t,cut}}^{2}) f_{J/p}(x^{-}, p_{\text{t,cut}}^{2}) \end{split}$$

• allows one to use external PDFs $f_{I/p}(x,Q^2)$

• but: requires additional assumptions on the overlap function $O_{pp}(b) \Rightarrow$ on spacial parton distributions in the proton

'Minijet' approach: define (mini-)jet production eikonal independently of soft processes (DPMJET, SIBYLL)

$$\begin{split} \chi_{pp}^{\text{hard}}(s, b, p_{\text{t,cut}}) &= \sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) \ O_{pp}(b) \\ \sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) &= \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}} > p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \ \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ &\times \ f_{I/p}(x^{+}, p_{\text{t,cut}}^{2}) f_{J/p}(x^{-}, p_{\text{t,cut}}^{2}) \end{split}$$

• allows one to use external PDFs $f_{I/p}(x,Q^2)$

• but: requires additional assumptions on the overlap function $O_{pp}(b) \Rightarrow$ on spacial parton distributions in the proton

'Minijet' approach: define (mini-)jet production eikonal independently of soft processes (DPMJET, SIBYLL)

$$\begin{split} \chi_{pp}^{\text{hard}}(s, b, p_{\text{t,cut}}) &= \sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) \ O_{pp}(b) \\ \sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) &= \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}} > p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \ \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ &\times \ f_{I/p}(x^{+}, p_{\text{t,cut}}^{2}) f_{J/p}(x^{-}, p_{\text{t,cut}}^{2}) \end{split}$$

- allows one to use external PDFs $f_{I/p}(x,Q^2)$
- but: requires additional assumptions on the overlap function $O_{pp}(b) \Rightarrow$ on spacial parton distributions in the proton

NB: Additional differences between the 'semihard Pomeron' and 'minijet' approaches arise at particle production level

- experimentally: formation of LRG not covered by secondaries
- in many models (e.g. PYTHIA), diffraction is treated independently of ND collisions

<ロ> <同> <同> <三>

-∢ ≣ ▶

- experimentally: formation of LRG not covered by secondaries
- in many models (e.g. PYTHIA), diffraction is treated independently of ND collisions
- but: microscopically, diffractive treatment is closely related to cross sections & ND particle production

(e.g. higher diffraction \Rightarrow smaller σ_{pp}^{inel} & longer multiplicity tails)

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: $|p\rangle = \sum_{i} \sqrt{C_i} |i\rangle$

$$p = + + + + + \cdots$$

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: $|p\rangle = \sum_{i} \sqrt{C_i} |i\rangle$

+

+

• in *pp* scattering, those states undergo different absoprtion: $|p\rangle = \sum_i \sqrt{C_i} |i\rangle \rightarrow \sum_i \sqrt{C'_i} |i\rangle = \alpha |p\rangle + \beta |p^*\rangle$

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: $|p\rangle = \sum_{i} \sqrt{C_i} |i\rangle$

- in *pp* scattering, those states undergo different absoprtion: $|p\rangle = \sum_{i} \sqrt{C_{i}} |i\rangle \rightarrow \sum_{i} \sqrt{C'_{i}} |i\rangle = \alpha |p\rangle + \beta |p^{*}\rangle$
- \Rightarrow treatment involves interaction eikonals $\chi_{pp(ij)}^{\text{tot}}(s, b, Q_0^2)$ for different combinations of such states, e.g.

$$\sigma_{pp}^{\text{inel}}(s,b) = \sum_{i,j} C_i C_j \int d^2 b \left[1 - e^{-2\chi_{pp(ij)}^{\text{tot}}(s,b)} \right]$$

+

Good-Walker approach: proton is a superposition of a number of elastic scattering eigenstates: $|p\rangle = \sum_{i} \sqrt{C_i} |i\rangle$

+

- in *pp* scattering, those states undergo different absoprtion: $|p\rangle = \sum_{i} \sqrt{C_{i}} |i\rangle \rightarrow \sum_{i} \sqrt{C'_{i}} |i\rangle = \alpha |p\rangle + \beta |p^{*}\rangle$
- \Rightarrow treatment involves interaction eikonals $\chi_{pp(ij)}^{\text{tot}}(s, b, Q_0^2)$ for different combinations of such states, e.g.

$$\sigma_{pp}^{\text{inel}}(s,b) = \sum_{i,j} C_i C_j \int d^2 b \left[1 - e^{-2\chi_{pp(ij)}^{\text{tot}}(s,b)} \right]$$

• 'semihard Pomeron': own values $\gamma_{p(i)}$ & $R_{p(i)}^2$ for each state $|i\rangle$

+ •

• 'minijet' approach: one would need partial generalized parton distributions (GPDs) $G_p^{(i)}(x,b,Q^2)$ for all the states
Phenomenological approaches: nonlinear effects

• Problem: for realitic PDFS, both cross sections & multiplicity of produced hadrons rise too steeply with energy

Phenomenological approaches: nonlinear effects

 Problem: for realitic PDFS, both cross sections & multiplicity of produced hadrons rise too steeply with energy

This signals the need to account for nonlinear interaction effects

When parton density becomes high (high energy and/or small *b*):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production compensated by fusion of partons

Phenomenological approaches: nonlinear effects

This signals the need to account for nonlinear interaction effects

When parton density becomes high (high energy and/or small b):

- parton cascades strongly overlap and interact with each other
- ⇒ shadowing effects (slower rise of parton density)
- saturation: parton production

In QGSJET-II: Pomeron-Pomeron interactions (scattering of intermediate partons off the proj./target hadrons & off each other)

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▼ のへで

For PDFs fitting HERA data

This is nontrivial, not being related to parton saturation

- e.g. factorizable graphs: provide corrections both to $\sigma_{tot/el}$ & PDFS
- they describe parton rescattering off the parent hadrons
- but they don't play the major role

This is nontrivial, not being related to parton saturation

- e.g. factorizable graphs: provide corrections both to $\sigma_{tot/el}$ & PDFS
- they describe parton rescattering off the parent hadrons
- but they don't play the major role

This is nontrivial, not being related to parton saturation

- nonfactorizable graphs: rescattering off the partner hadrons
- have no impact on PDFs & inclusive particle spectra
- but: strongly damp interaction cross sections

This is nontrivial, not being related to parton saturation

- nonfactorizable graphs: rescattering off the partner hadrons
- have no impact on PDFs & inclusive particle spectra
- but: strongly damp interaction cross sections

This is nontrivial, not being related to parton saturation

- nonfactorizable graphs: rescattering off the partner hadrons
- have no impact on PDFs & inclusive particle spectra
- but: strongly damp interaction cross sections

< D > < B > < E >

EPOS model: qualitatively similar approach but based on effective treatment of lowest order enhanced diagrams

This is nontrivial, not being related to parton saturation

- nonfactorizable graphs: rescattering off the partner hadrons
- have no impact on PDFs & inclusive particle spectra
- but: strongly damp interaction cross sections

EPOS model: qualitatively similar approach but based on effective treatment of lowest order enhanced diagrams

In other models: energy dependent p_{t} -cutoff for jet production, $p_{t,cut} = p_{t,cut}(s)$

• is it reasonable and what kind of physics is behind?

$$\begin{split} \sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) &= \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}} > p_{\text{t,cut}}} dp_t^2 \int dx^+ \, dx^- \, \frac{d\sigma_{IJ}^{2 \to 2}(x^+ x^- s, p_t^2)}{dp_t^2} \\ &\times f_{I/p}(x^+, M_{\text{F}}^2) f_{J/p}(x^-, M_{\text{F}}^2) \end{split}$$
$$\bullet \Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) &\propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \, \Delta_{\text{eff}} \simeq 0.3 \end{split}$$

$$\sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) = \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}}>p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ \times f_{I/p}(x^{+}, M_{\text{F}}^{2}) f_{J/p}(x^{-}, M_{\text{F}}^{2})$$

- $\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \simeq 0.3$
- with PDFS $f_{I/p}(x, Q^2)$ known from HERA data, no freedom: $dN_{ch}/d\eta|_{\eta=0} \propto \sigma_{pp}^{jet}$ explods at high energies for small Q_0^2

$$\sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) = \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}}>p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ \times f_{I/p}(x^{+}, M_{\text{F}}^{2}) f_{J/p}(x^{-}, M_{\text{F}}^{2})$$

- $\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \simeq 0.3$
- with PDFS $f_{I/p}(x, Q^2)$ known from HERA data, no freedom: $dN_{\rm ch}/d\eta|_{\eta=0} \propto \sigma_{pp}^{\rm jet}$ explods at high energies for small Q_0^2
 - in QGSJET-II-04, a rather large value (3 GeV^2) is used
 - with the factorization scale $M_{
 m F}^2=p_{
 m t}^2/4$, yields $p_{
 m t}^{
 m cut}\simeq 3.4~{
 m GeV}$
 - but: pQCD should work down to $Q_0 \sim 1$ GeV?!

$$\sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) = \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}}>p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ \times f_{I/p}(x^{+}, M_{\text{F}}^{2}) f_{J/p}(x^{-}, M_{\text{F}}^{2})$$

- $\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \ \Delta_{\text{eff}} \simeq 0.3$
- with PDFS $f_{I/p}(x, Q^2)$ known from HERA data, no freedom: $dN_{\rm ch}/d\eta|_{\eta=0} \propto \sigma_{pp}^{\rm jet}$ explods at high energies for small Q_0^2
 - in QGSJET-II-04, a rather large value (3 GeV^2) is used
 - with the factorization scale $M_{
 m F}^2=p_{
 m t}^2/4$, yields $p_{
 m t}^{
 m cut}\simeq 3.4~{
 m GeV}$
 - but: pQCD should work down to $Q_0 \sim 1$ GeV?!
- ideally, p_t-cutoff should be just a technical parameter, without a strong impact on the results

$$\sigma_{pp}^{\text{jet}}(s, p_{\text{t,cut}}) = \sum_{I,J=q,\bar{q},g} \int_{p_{\text{t}}>p_{\text{t,cut}}} dp_{t}^{2} \int dx^{+} dx^{-} \frac{d\sigma_{IJ}^{2 \to 2}(x^{+}x^{-}s, p_{t}^{2})}{dp_{t}^{2}} \\ \times f_{I/p}(x^{+}, M_{\text{F}}^{2}) f_{J/p}(x^{-}, M_{\text{F}}^{2})$$

- $\Rightarrow \sigma_{pp}^{\text{jet}}(s, Q_0^2) \propto \frac{1}{Q_0^2} s^{\Delta_{\text{eff}}}, \Delta_{\text{eff}} \simeq 0.3$
- with PDFS $f_{I/p}(x, Q^2)$ known from HERA data, no freedom: $dN_{\rm ch}/d\eta|_{\eta=0} \propto \sigma_{pp}^{\rm jet}$ explods at high energies for small Q_0^2
 - in QGSJET-II-04, a rather large value (3 GeV^2) is used
 - with the factorization scale $M_{
 m F}^2=p_{
 m t}^2/4$, yields $p_{
 m t}^{
 m cut}\simeq 3.4~{
 m GeV}$
 - but: pQCD should work down to $Q_0 \sim 1$ GeV?!
- ideally, p_t-cutoff should be just a technical parameter, without a strong impact on the results
- ⇒ some important perturbative mechanism seems missing

Collinear factorization: valid at leading twist (up to $1/Q^n$ terms)

個 と く ヨ と く ヨ と

• for small p_t^2 , power corrections can be important (being suppressed as $1/(p_t^2)^n$)

Collinear factorization: valid at leading twist (up to $1/Q^n$ terms)

- for small p_t^2 , power corrections can be important (being suppressed as $1/(p_t^2)^n$)
- promising: corrections due to parton rescattering on 'soft' $(x \simeq 0)$ gluons [Qiu & Vitev, 2004, 2006]
 - hard scattering involves any number of additional gluon pairs

Collinear factorization: valid at leading twist (up to $1/Q^n$ terms)

- for small p_t^2 , power corrections can be important (being suppressed as $1/(p_t^2)^n$)
- promising: corrections due to parton rescattering on 'soft' ($x \simeq 0$) gluons [Qiu & Vitev, 2004, 2006]
 - hard scattering involves any number of additional gluon pairs

QGSJET-III: phenomenological implementation of the mechanism

- with HT effects: dependence on Q₀-cutoff strongly reduced [SO & Bleicher, 2019]
 - now: twice smaller cutoff for hard processes $(Q_0^2 = 1.5 \text{ GeV}^2)$

QGSJET-III: phenomenological implementation of the mechanism

• with HT effects: dependence on Q₀-cutoff strongly reduced [SO & Bleicher, 2019]

• now: twice smaller cutoff for hard processes $(Q_0^2 = 1.5 \text{ GeV}^2)$

 $) \land (\bigcirc)$

・ロン ・回と ・ヨン・

- reduction of N_{ch}: stronger at higher energies
- mostly for moderately small p_t: the effect fades away for increasing p_t (∝ 1/p_t²)

・ロン ・回と ・ヨン・

- reduction of N_{ch}: stronger at higher energies
- mostly for moderately small p_t: the effect fades away for increasing p_t (∝ 1/p_t²)

QGSJET-III: phenomenological implementation of the mechanism

• with HT effects: dependence on Q₀-cutoff strongly reduced [SO & Bleicher, 2019]

• now: twice smaller cutoff for hard processes $(Q_0^2 = 1.5 \text{ GeV}^2)$

Results for air showers: preliminary and close to QGSJET-II-04

- e.g. difference for N_{μ} at percent level
- \bullet shower maximum shifted upwards by $\simeq 10~{\rm g/cm^2}$ at $10^{19}~{\rm eV}$

- 4 回 > - 4 回 > - 4 回 >

QGSJET-III: phenomenological implementation of the mechanism

• with HT effects: dependence on Q₀-cutoff strongly reduced [SO & Bleicher, 2019]

• now: twice smaller cutoff for hard processes $(Q_0^2 = 1.5 \text{ GeV}^2)$

NB: qualitatively, the approach mimics an energy dependent p_{t} -cutoff for jet production

- suppresses emission of jets of moderately small pt
- has no impact on PDFs \Rightarrow not related to parton saturation

Current approaches to the treatment of hadronic collisions: rather involved but largely phenomenological

- ullet \Rightarrow no wonder models differ from each other
- however: predictions now strongly constrained by LHC data

What next?

Current approaches to the treatment of hadronic collisions: rather involved but largely phenomenological

- ullet \Rightarrow no wonder models differ from each other
- however: predictions now strongly constrained by LHC data

What about present differences for EAS predictions?

 now largely dominated by model differences for pion-air (kaon-air) collisions [SO & Bleicher, 2016]

What next?

Current approaches to the treatment of hadronic collisions: rather involved but largely phenomenological

- ullet \Rightarrow no wonder models differ from each other
- however: predictions now strongly constrained by LHC data

What about present differences for EAS predictions?

- now largely dominated by model differences for pion-air (kaon-air) collisions [SO & Bleicher, 2016]
- NB: extrapolation from pp to π -air and K-air is rather constrained in a particular approach
 - is it feasible to discriminate between the approaches?

- 4 回 > - 4 回 > - 4 回 > - -

臣

• do some/all models do it right?

What next?

Current approaches to the treatment of hadronic collisions: rather involved but largely phenomenological

- ullet \Rightarrow no wonder models differ from each other
- however: predictions now strongly constrained by LHC data

What about present differences for EAS predictions?

- now largely dominated by model differences for pion-air (kaon-air) collisions [SO & Bleicher, 2016]
- NB: extrapolation from pp to π -air and K-air is rather constrained in a particular approach
 - is it feasible to discriminate between the approaches?
 - do some/all models do it right?
- current indications from UHECR data:

treatment of pion-air collisions may be deficient

Interpreting PAO data on $X_{\text{max}} \& X_{\text{max}}^{\mu}$: not self-consistent

- change a model to modify X_{max} prediction:
 - X^{μ}_{\max} will move in the same direction!
- or vice versa

Changing the treatment of p - air interactions?

- this impacts only the initial stage of EAS development
 - further cascade development dominated by pion-air collisions

個 と く ヨ と く ヨ と

Changing the treatment of p - air interactions?

- this impacts only the initial stage of EAS development
 - further cascade development dominated by pion-air collisions
- ⇒ parallel up/down shift of the cascade profile (same shape)
 - \Rightarrow same effect on X_{\max} and X_{\max}^{μ}

Changing the treatment of p - air interactions?

- this impacts only the initial stage of EAS development
 - further cascade development dominated by pion-air collisions
- ⇒ parallel up/down shift of the cascade profile (same shape)
 - \Rightarrow same effect on X_{\max} and X_{\max}^{μ}

Changing the treatment of p - air interactions?

- this impacts only the initial stage of EAS development
 - further cascade development dominated by pion-air collisions
- ⇒ parallel up/down shift of the cascade profile (same shape)
 - \Rightarrow same effect on X_{\max} and X_{\max}^{μ}
- ⇒ not a way to reach a consistency

Changing the treatment of π – air collisions ('Achilles & Tortoise')

- e.g., $\sigma_{\pi-air}^{inel}$, $\sigma_{\pi-air}^{diffr}$, $K_{\pi-air}^{inel}$
 - making special assumptions concerning the pion structure

Changing the treatment of π – air collisions ('Achilles & Tortoise')

- e.g., $\sigma_{\pi-\mathrm{air}}^{\mathrm{inel}}$, $\sigma_{\pi-\mathrm{air}}^{\mathrm{diffr}}$, $K_{\pi-\mathrm{air}}^{\mathrm{inel}}$
 - making special assumptions concerning the pion structure
- affects every step in the multi-step hadron cascade
 - \Rightarrow cumulative effect on X_{\max}^{μ}

Modifying CR interaction models: which way to go?

Changing the treatment of π – air collisions ('Achilles & Tortoise')

- e.g., $\sigma_{\pi-\mathrm{air}}^{\mathrm{inel}}$, $\sigma_{\pi-\mathrm{air}}^{\mathrm{diffr}}$, $K_{\pi-\mathrm{air}}^{\mathrm{inel}}$
 - making special assumptions concerning the pion structure
- affects every step in the multi-step hadron cascade
 - \Rightarrow cumulative effect on X_{\max}^{μ}
- but: only the first few steps in the cascade impact X_{max}
 - after few steps, most of energy channelled into e/m cascades
 - \Rightarrow much weaker effect on X_{max}

Modifying CR interaction models: which way to go?

Modifying CR interaction models: which way to go?

E.g., replacing QGSJET-II by the old QGSJET, for π – air collisions

• \Rightarrow nearly self-consistent interpretation

NB: higher σ^{inel}_{π-air} & N^{ch}_{π-air} with current models – very challenging
old QGSJET – outdated; known to overestimate particle production in π – air collisions

needed: drastic increase of gluon density in pions?!

- Current approaches to the treatment of hadronic collisions: involved but largely phenomenological
 - predictions now strongly constrained by LHC data
- Present differences for EAS predictions: largely dominated by model differences for pion-air collisions
- UHECR data indicate serious deficiences in the current treatments
- Required modifications of the model predictions: challenging