The COSMOS air shower simulation program

Takashi Sako

(ICRR, University of Tokyo)

for the COSMOS development team

<u>Official web : http://cosmos.icrr.u-tokyo.ac.jp/cosmosHome/</u> <u>New web under develop : http://cosmos.icrr.u-tokyo.ac.jp/COSMOSweb/</u>

Congratulations 30 years anniversary of CORSIKA!!

Congratulations 30 years anniversary of CORSIKA!!

How old is COSMOS?

Slides by Prof. Kasahara in the atmospheric neutrino workshop at Nagoya in March 2019

What are these ?

COSMOS General Features

- Monte Carlo air shower simulator
- Fortran (+ C)
- User Interface: Fortran (or C++)
- Compiler: Formal Fortran
 - Intel Fortran
 - GFortran (available since COSMOS v8 in 2017)
 - cmake available soon
- Thinning
- Parallel computing
 - MPI
 - Skelton-smach- flesh method
- Hybrid AS size computing (MC + analytical)

New team :

K.Kasahara, T.Sako, A.Taketa, N.Sakurai, H.Menjo, Y.Tameda, N.Sakaki, Y.Tsunesada, T.Fujii +

Physics Processes

• Elemag

- Photoelectric eff., Rayleigh scat., Compton scat.
- (Mag.) Pair cre.
- Brems., e+ annihilation, Bhabha, Moller scat.
- Synchrotron
- Photo-hadron prod.
- LPM effect on brems. and pair.
- Multiple scat.
- Muon
 - Brems, pair, nucl. In.
 - Polarization, stopping mu- capture
- Hadron
 - Interaction models

Control parameter list

'primary' file

'p'	'GeV' 0.1 0.2 .3 .4 .5	'KE/n' 1.2 1.5 1.7 1.9 1.93	' d'	0 /
	. 6 . 8 1. 5 2. 3. 4. 10. 20.	$1.9 \\ 1.8 \\ 1.5 \\ 1.25 \\ .8 \\ .55 \\ .1 \\ .02$		
'He'	100. 0 'GeV' . 1 . 2 . 4 . 6 . 8 1. 2. 5	2.8e-4 0, KE/n, 7 1. 1.2 1.25 1.2 1.15 .7	'd'	0 /
'CNO'	5. 10. 30. 100. 0 'GeV' .1 .2 .3 .5 .8 1. 1. 3	0.35 0.065 .008 2.e-4 0 'KE/n' .013 .28 .4 .65 .8 .85 .88	'd'	0 /
	2. 0 4. 6. 10. 20.	. 75 . 35 . 2 . 07 . 012		11

COSMOS User Interface

Early days application "Atmospheric neutrino fluxes"

M.Honda, K.Kasahara, K.Hidaka, S.Midorikawa, PLB 248 (1990)

- Muon polarization, which biases e and v_{μ} energies in μ decay, was implemented
- 20% effect in flux, but 5% in ratio
- Kamiokmande $(v_e + \bar{v}_e)/(v_\mu + \bar{v}_\mu)$ anomaly was not explained

=> Neutrino oscillation scenario

Interaction modification in a user function T. Sako et al., ICRC 2013

Softening in the COSMOS user hook function.

Muography

(R.Nishiyama, A.Taketa, S.Miyamoto, K.Kasahara, Geophys. J. Int. (2016) 206)

Muography

(R.Nishiyama, A.Taketa, S.Miyamoto, K.Kasahara, Geophys. J. Int. (2016) 206)

momentum (GeV/c)

Muography

(R.Nishiyama, A.Taketa, S.Miyamoto, K.Kasahara, Geophys. J. Int. (2016) 206)

19

Recent Application by K.Ohashi (LHCf, Nagoya)

1st interaction category and <X_{max}>

CORSIKA – COSMOS comparison

S. Roh et al., Astroparticle Physics 44 (2013) 1-8

• >80GeV QGSJET II-03

10^{19.5} eV Fe vertical

<80GeV FLUKA for CORSIKA, PHITS and JAM in COSMOS

CORSIKA – COSMOS comparison

- >80GeV QGSJET II-03
- <80GeV FLUKA for CORSIKA, PHITS and JAM in COSMOS

Tracking in the geo (arbitrary) magnetic field

Tracking in non-air material fusion with EPICS – on going update --

- EPICS is a detector simulation code allowing arbitrary material, shape, ...
- Seamless simulation into rock, ice, water, ... using high energy interaction models
- Muongraphy

Extra-Terrestrial Air showers !? -- proposed application --

٠

•

- Fermi/LAT observation
- GCR + solar atmosphere

A.Abdo et al., ApJ, 734:116 (10pp), 2011

- Time dependent energy spectrum, emission region
- GCR + solar magnetic field + interaction with H, He, ...

4.2

• Quantitative explanation by COSMOS?

More applications?

Tracking in strong magnetic field

Air showers in other planets

Summary

- COSMOS is...
 - old in origin, but updating continuously
 - maintained by a new development team formed recently
 - easily used under Gfortran environment
- COSMOS can...
 - simulate air showers under various conditions CROSS CHECK WITH CORSIKA
 - extend to non-terrestrial atmosphere simulations
 ORIGINALITY W.R.T. CORSIKA