Opportunities with Calorimeters at LHC : How to solve the muon puzzle ?

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

CORSIKA Workshop, Karlsruhe, Germany June the 18th 2019

Outline

- Muons in Extensive Air Showers (EAS)
- O degree calorimeters
 - Pion exchange
- Muon puzzle
 - Quark Gluon Plasma (QGP) as possible explanation
- Forward calorimeters
 - Test of hadronization scheme
- Summary

UHECR Composition

With muons current CR data are impossible to interpret

- Very large uncertainties in model predictions
- Mass from muon data incompatible with mass fro X_{max}

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

H. Dembinski UHECR 2018 (WHISP working group)

QGP and EAS

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - mass and energy of primary CR
 - cross-sections (p-Air and (π -K)-Air)
 - (in)elasticity
 - multiplicity
 - charge ratio and baryon production
- Change of primary = change of hadronic interaction parameters
 - cross-section, elasticity, mult. ...

With unknown mass composition hadronic interactions can only be tested using various observables which should give consistent mass results

Muon production by low energy interactions

CORSIKA – June 2019

Muon Production Depth X^µ_{max} and X_{max}

- 2 independent mass composition measurements
 - both results should be between p and Fe
 - both results should give the same mean logarithmic mass for the same model
 - problem with EPOS appears after corrections motivated by LHC data (diffraction and forward baryon production) related to pion interaction (from low to high energy)

Model Predictions π +p @ LHC

Models well constraint by LHC run I for pp

LHC and Muon Production

Which phase space is important at LHC for muon production ?

modify CONEX (EAS simulation) to extract muons produced by subshowers with interaction energy between 30 and 300 PeV (lab ~ LHC cms)

Muon production dominated by pion interactions

Muon production depends on secondaries with 0.03 < x < 0.3 from primaries in LHC energy range</p>

LHC acceptance and Phase Space

- p-p data mainly from "central" detectors
 - → pseudorapidity η =-ln(tan(θ /2))
 - \rightarrow $\theta=0$ is midrapidity
 - $\Rightarrow \theta >>1$ is forward
 - \rightarrow θ << 1 is backward
- Different phase space for LHC and air showers
 - most of the particles produced at midrapidity
 - important for models
 - most of the energy carried by forward (backward) particles

important for air showers

Muons in EAS

LHCf vs CR Models 7 TeV

- **Provide a set of a**
 - ✤ 20% to 30% "excess" in models at low energy for gammas
 - large difference between models
- Stronger deviation for neutrons
 - Clear "pion exchange" peak (not "really" in the models)

π Exchange to Test π Interactions

Physics discussed in detail for HERA (HI and ZEUS) measurements (see, for example, Khoze et al. Eur. Phys. J. C48 (2006), 797 and Refs. therein)

$$\frac{\mathrm{d}\sigma(\gamma p \to Xn)}{\mathrm{d}x_{\mathrm{L}}\,\mathrm{d}t} = S^2 \frac{G_{\pi^+ pn}^2}{16\pi^2} \frac{(-t)}{(t-m_{\pi}^2)^2} F^2(t) \times (1-x_{\mathrm{L}})^{1-2\alpha_{\pi}(t)} \sigma_{\gamma\pi}^{\mathrm{tot}}(M^2) \,.$$

Use same expression and replace γ by p, but different absorptive corrections (smaller rate expected, should be still possible in low-luminosity runs)

R. Engel

Global Picture of Muons from EAS

Different energy or mass scale cannot change the slope
 Different property of hadronic interactions at least above 10¹⁶ eV

Ref: EPJ Web Conf. 210 (2019) 02004 - arXiv:1902.08124

QGP and EAS

Constraints from Correlated Change

 $\left< \ln N_{\mu} \right> - \ln N_{\mu}^{\text{ref}}$

- One needs to change energy dependence of muon production by ~+4%
- To reduce muon discrepancy
 β has to be change
 - X_{max} alone (composition) will not change the energy evolution
 - β changes the muon energy evolution but not X_{max}

$$\beta = \frac{\ln (N_{mult} - N_{\pi^0})}{\ln (N_{mult})} = 1 + \frac{\ln (1 - \alpha)}{\ln (N_{mult})}$$

$$\rightarrow$$
 +4% for β \rightarrow -30% for α =

 $\langle X_{\rm max} \rangle / \rm g \, cm^{-2}$

Possible Particle Physics Explanations

A 30% change in particle charge ratio ($\alpha = \frac{N_{\pi^0}}{N_{mult}}$) is huge !

- Possibility to increase N_{mult} limited by X_{max}
- New Physics ?
 - Chiral symmetry restoration (Farrar et al.) ?
 - Strange fireball (Anchordoqui et al.) ?
 - String Fusion (Alvarez-Muniz et al.) ?
 - → Problem : no strong effect observed at LHC (~10¹⁷ eV)
- Unexpected production of Quark Gluon Plasma (QGP) in light systems observed at the LHC ? (at least modified hadronization)
 - Beduced α is a sign of QGP formation (Baur et al.) !
 - Not properly done in EPOS LHC (QGP only in extreme conditions)

Try a modified version of EPOS

QGP and EA

Forward Calorimeters

Modified EPOS with Extended Core

Core in EPOS LHC appear too late

- Recent publication show the evolution of chemical composition as a function of multiplicity
- Large amount of (multi)strange baryons produced at lower multiplicity than predicted by EPOS LHC
- Create a new version EPOS QGP with more collective hadronization
 - Core created at lower energy density
 - More remnant hadronized with collective hadronization
 - Collective hadronization using grand canonical ensemble instead of microcanonical (closer to statistical decay)

QGP and EA

Results for Air Showers

Large change of the number of muons at ground _ප 0.55 Different slope as expected from the change in α - α =N_//N_{all} π + Air 10⁵ GeV 0.5 0.035 **EPOS QGP** 0.45 **QGSJETII-04** Fe EPOS LHC SIBYLL 2.3c 0.4 (****** 0.35 0.03 (GeV^{-0.925}) 0.3 0.25 -13% 0.2 0.025 0.15 -2 -1 10 10 **Ν_μ/Ε^{0.925}** Х 0.02 ratio MOD/QGSJETII-04 E=10¹⁹eV 1.4 SIBYLL 2.3c **EPOS LHC** р 1.2 **EPOS QGP QGSJETII-04** 0.015 --- EPOS LHC **EPOS QGP** 1 -SIBYLL 2.3c **EPOS Extreme** 0.8 **10²⁰** 10³ **10**¹⁸ **10**¹⁵ **10**¹⁶ **10¹⁹ 10**¹⁷ **10²¹** 10 10 1 μ energy (GeV) (eV) Energy

CORSIKA – June 2019

T. Pierog, KIT - 17/20

QGP and **EA**

Comparison with Data

- Probably tension at low energy (too many muons)
 - \blacksquare Ideally a larger slope would be needed ... what kind of hadronization possible ?
 - QGP with large chemical potential (Anchordoqui et al.) ?

Forward Calorimeters

Test Effect of Collective Hadronization

- Reduced α is a sign of QGP formation (Baur et al. ArXiv:1902.09265) !

- Problem : α changed at most by 20% for $\mu_{\rm B}$ =0
- Behavior α at different $\mu_{\rm B}$?

Possible test using forward (and central) calorimeters at LHC

forward/backward asymmetry and centrality evolution

Summary

Cosmic Ray data analysis rely on air shower simulations

- hadronic models main source of uncertainty
- forward physics lead air shower development
- pion interaction very important for muon production

Zero degree calorimeter based analysis

possibility to select pion exchange type of interactions: test pion interaction at very high energy for the first time !

Compilation of all muon measurements clearly indicate a different slope for muon production as a function of shower energy

- Different hadronization required (less neutral pions / other particles)
- Collective hadronization in small system / forward in line with LHC results ?
- Probe new area in quark matter phase diagram ?

Combination of forward and central calorimetric measurements to probe hadronization

Test forward extension of collective hadronization !

Preliminary Version with Minimum Constraints

CORSIKA – June 2019

Results for Air Showers

- Small change for <X_{max}> as expected
- Significant change of $< X^{\mu}_{max} >$
- Comparison with extreme case (almost only grand canonical hadron.)
 - maximum effect using this approach
 - not compatible with accelerator data

Muons in EAS

Muon puzzle

QGP and EAS

Forward Calorimeters

Model predictions for p+p

Models well constraint by LHC run I for pp

 only small differences in model predictions

 main difference in high multiplicity tail Muons in EAS

Muon puzzle

QGP and EAS

Forward Calorimeters

Model Predictions π +p

Models well constraint by LHC run I for pp

only small differences in model predictions - main difference in high multiplicity tail ➡ different behavior for π and р interactions ➡ larger differences

CORSIKA – June 2019

than in pp

QGP and EAS

Forward Calorimeters

Remnants

Source Contributions in LHCf (Neutron)

CORSIKA – June 2019

T. Pierog, KIT - 26/20