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Cosmic ray physics motivation:
Charge exchange in pA/pp collisions

π+A (or π+p) collision→ different structure functions than pA/pp
Pion not available at these energies
Extremely relevant for ultra-high energy cosmic ray physics
Process can be tagged by detecting neutron
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Particle physics motivation 1: Centrality in pA/AA coll.

Heavy ion (AA) collisions:
Impact parameter ∼ Number of binary collisions (Ncoll)
Important in the measurement of nuclear modification
factor:

RAA =
dNAA/dpT

〈Ncoll〉dNpp/dpT

Typical centrality estimator: charged particle multiplicity
Hadron-nucleus (hA) collisions:

Relevant quantity is Ncoll, but only loosely correlated with
impact parameter and multiplicity
Unbiased centrality estimator: zero degree energy
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Particle physics motivation 2: Utraperipheral collisions

Interacting only via EM field (∼ pγ and γγ collisions)
Using ZDC as a veto:

Selects events where nucleus/nuclei remain intact.

E.g. Υ photoproduction→ probing gluon pdf of proton
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Particle physics motivation 3: Flow and reaction plane

Hot, dense matter produced in heavy ion collisions
φ-distribution of particles w.r.t. reaction plane expanded to
Fourier modes (vn).
vn: flow coefficients, signature of anisotropy and behaviour
of hot, dense matter
Important: reaction plane, but very hard to measure
→ can be estimated by investigating spectator neutron
spatial distribution
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Zero Degree Calorimeter

Located in neutral particle
absorber (TAN), ∼ 140 m
from IP5 – between the
two beampipes.
Measures forward neutral
particles at |η| > 8.5
Charged products are
wiped out by magnets.
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Segmentation of ZDC detector

Segmentation:

EM: y-axis –
5 channels

HAD: longitudinally –
4 channels

RPD: 4 x 4 quartz
array – 16 channels

Physics capabilities:

Centrality in pA, AA

Tagging UPC events

Event plane
(with RPD)
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ZDC detector

Electromagnetic section (EM):
33 vertical tungsten plates
19 radiation lengths or one
nuclear interaction length.
5 divisions in the x direction
(Not enough room for read-out of y-segmentation)

Hadron section (HAD):
24 tungsten plates
5.6 hadronic interaction length
Plates are tilted by 45◦ →
maximizes the light that a fiber
can pick up.
Divided into 4 segments in z
direction
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ZDC in pA collisions

ZDC on Pb-going side:

Nuclear/heavy-ion physics

Disintegration of residual nucleus

Giant dipole resonance

Centrality, event plane

UPC collisions

ZDC on p-going side:

Cosmic ray physics

Charge exchange

⇒ Tagging neutrons

⇒ Measurement of
neutron energy loss
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Forward neutrons in pA and AA collisions

Hadron-nucleus collision

⇓

NN collisions⇒ cascade nucleons (βA ∈ [0.3,0.7])

⇓

Excited nucleus

⇓

Break-up of nucleus

⇓

Nuclear evaporation⇒ evaporation nucleons (βA < 0.3)
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Calibration – neutron peaks

ZDC signal [au.]
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Pileup in ZDC runs

ZDC signal [au.]
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Larger shoulder for larger pileup values
Looking for 〈µ〉 = 0 case, expectation: shoulder disappears
Using Fourier deconvolution method
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Pileup correction

ZDC signal [a.u.]
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Results are consistent with the expectation.
The µ = 0.18 result is used in the following step.
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Application 1: Centrality with ZDC in pPb collisions

Number of spectator neutrons:

Unbiased centrality estimator in
pPb collisions

Theoretical model needed to
describe the relation

〈Ncoll〉 = f (Nneuton)

Models working only for lower
energies

Measuring spectator neutron
multiplicity distribution:
useful input for tuning MC event
generators to describe LHC
energies
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Application 2: Measuring neutron number distribution
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Assuming Gauss shape ZDC response for single neutron
Assuming linear ZDC response
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Application 2: Measuring neutron number distribution
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Using linear regulatization to unfold neutron number distribution
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Summary

Zero Degree Calorimeter – ZDC
Zero degree neutrons are observed with CMS ZDC
ZDC is calibrated using neutron peaks
Wide variety of physics capabilities:

- Charge exchange measurements
- Study of nuclear disintegration
- Tagging UPC events
- Centrality estimator
- Measure event plane (RPD)

Thank you for your attention!
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1. Backup
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Cherenkov angle

Cherenkov angle:

cos θ =
1

nβ
β ≈ 1 for relativistic particles,

n ≈
√

2 for quartz fiber
⇒ θ ≈ 45◦
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Example fits – 1
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Example fits – 2

ZDC signal [au.]
0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s

0

2000

4000

6000

8000

10000

12000
Data, run: 286302

Sum of Gaussians:

0
µ = n 

n
µ

0σ n = nσ

pPb 8.16 TeV

CMS
Preliminary

ZDC signal [au.]
0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000
Data, run: 286314

Sum of Gaussians:

0
µ = n 

n
µ

0σ n = nσ

pPb 8.16 TeV

CMS
Preliminary

Run number 286178 286301 286302 286314

1 n peak location 59.2± 0.04 63.70± 0.05 59.02± 0.04 55.79± 0.03
1 n peak width 14.24± 0.02 15.25± 0.03 13.94± 0.03 13.14± 0.03

Olivér Surányi Zero-degree neutron measurements with CMS 4 / 9



Deconvolution via Fourier transform

Assume that n number of pPb collisions in a bunch crossing is
Poisson distributed:

pn =
µn

n!

e−µ

1− e−µ

(only the n > 0 case is considered, 1 − e−µ appears in the denominator to ensure proper normalization)

µ: ZDC-effective number of collisions.

Then the ZDC energy deposit can be described by X random
variable:

X =
n∑

i=1

Yi ,

where Yi is the random variable describing ZDC energy deposit
for an event with single collision.
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Deconvolution via Fourier transform

Aim: calculate the pdf of Yi , g(x) when the pdf of X is known: f (x).
Using total probability theorem:

f (x) = g(x) p1 + (g ∗ g)(x) p2 + (g ∗ g ∗ g)(x) p3 + . . .

Taking the Fourier transform of both sides
(f (x)→ F (ω), g(x)→ G(ω)):

F (ω) =
∞∑

k=1

pk Gk (ω) =
e−µ

1− e−µ

∞∑
k=1

(µG(ω))k

k !
=

e−µ

1− e−µ
(

eµG(ω) − 1
)

After expressing G(ω) and doing inverse Fourier transform:

g(x) = F−1
[

1
µ

log [1 + (eµ − 1)F (ω)]

]
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Pileup correction result on toy model
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Simple model: ZDC signal distributed as Gaussian + Poisson pileup.

Method is validated by the toy model.
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Unfolding with linear regularization

Solve problem as a linear optimization problem:

R · u = c

R: response matrix
u: unknown neutron distribution
c: measured ZDC spectrum

Task: search for an u vector, which fulfils the equation above
and ’smooth enough’.
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Unfolding with linear regularization

Minimize

(R · u− c)TV−1(R · u− c) + λ(D · u)2

V: covariance matrix, Vij ≈ δijci

D: first difference matrix
λ: regularization coefficient

Need to solve matrix equation:

(RTV−1R + λDTD)u = RTV−1c
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