

see also T. Huege, Physics Reports 620 (2016) 1, doi:10.1016/j.physrep.2016.02.001, arXiv:1601.07426

Radio detection of extensive air showers

Tim Huege (Karlsruhe Institute of Technology and Vrije Universiteit Brussel)

KIT - The Research University in the Helmholtz Association

Comparison of ground experiments to scale

- from
 prototypes to
 large-scale
 experiments
- typical range 30-80 MHz, future higher
- sparse vs. dense arrays
- more to come: Auger Radio Upgrade, GRAND, IceTop Radio,

. . .

The radio signal

Broad-band pulses – mostly in MHz regime Karlsruhe Institute of Technology 5 100m Spectral electric field [V/m/MHz] 3 200m 2 300m 10⁻⁵ 500m 700m 2 5 900m 2 10^{-6} 100m 200m 5

Macroscopic interpretation of radio emission

primary effect: geomagnetic field induces *time-varying* transverse currents

Kahn & Lerche (1967)

Askaryan (1962,1965)

secondary effect: *time-varying* net charge excess (Askaryan effect)

Pierre Auger Coll., Phys. Rev. D 89 (2014) 052002.

"radial"

Complexity of radio-emission footprint

maximum amplitude of vertical iron shower at 40-80 MHz as simulated with CoREAS (higher frequencies: Cherenkov ring)

5

TH et al., ARENA2012

Comparison of simulations with LOFAR data

- measurement of individual shower with extreme level of detail
- data can be reproduced by simulations
- see geomagn., charge excess and Cherenkov effects

S. Buitink, A. Corstanje, J. E. Enriquez, et al., Phys. Rev. D 90 (2014) 082003.

Comparison of simulations with LOFAR data

- measurement of individual shower with extreme level of detail
- data can be reproduced by simulations
- see geomagn., charge excess and Cherenkov effects

S. Buitink, A. Corstanje, J. E. Enriquez, et al., Phys. Rev. D 90 (2014) 082003.

CORSIKA Workshop, June 2019

Many LOFAR events

all LOFAR events are described very well

Energy reconstruction

Tim Huege <tim.huege@kit.edu>

CORSIKA Workshop, June 2019

AERA energy reconstruction – radiation energy

- at each antenna calculate energy fluence from timeintegration of Poynting flux
- then
 integrate
 energy
 fluence over
 area using
 2D signal
 distribution
 model

"Radiation energy" as energy estimator

Radiation energy and electromagnetic energy

Xmax reconstruction

Lateral distribution as probe for composition

relativistic forward beaming of emission: geometrical distance from source to observer influences emission pattern TH et al., ARENA2012

vertical proton shower at 40-80 MHz simulated with CoREAS vertical iron shower at 40-80 MHz simulated with CoREAS

Experimental Xmax validation by Tunka-Rex

Fit of LOFAR particle and radio data

best fit out of 40 simulations

data fit to CoREAS simulations gives Xmax to ~17 g/cm²

S. Buitink et al., Phys. Rev. D 90 (2014) 082003, S. Buitink et al. Nature 435 (2016) 70

Horizontal air showers

Required detector spacing – inclined showers

CORSIKA Workshop, June 2019

Large-scale showers measured by AERA

- hundreds of inclined air showers measured by AERA
- size of footprint grows with zenith angle, up to 2 km in shower plane

Summary and conclusions

- radio detection of CRs has boomed and matured in the last decade
- we have clearly established
 - detailed understanding of radio emission physics (within 10%)
 - determination of arrival direction (well below 0.5°)
 - determination of air shower energy (~10%)
 - radio signal sensitivity to Xmax (<20 g/cm² for dense arrays)
- potential for application
 - independent calibration of energy scale from first principle calculations
 - air shower physics via measurement of purely electromagnetic cascade
 - mass sensitivity via Xmax or em/muon measurements

Backup

Tunka-Rex energy reconstruction

various reconstruction approaches being tested in AERA

current combined FD-RD resolution ~45 g/cm², so RD alone <~40 g/cm²

still room for improvement (only uses amplitude information)

E. Holt for the Pierre Auger Collaboration, PoS(ICRC2017)492

To understand the sources of cosmic rays ...

adapted from R. Engel

Energy threshold for radio detection

- previously, in 30-80 MHz band ~10¹⁷ eV (LOFAR few times 10¹⁶ eV)
- simulation studies show that at higher frequencies, detection possible down to few times 10¹⁵ eV (Galactic noise drops off)

Balagopal et al., EPJ C 78 (2018) 111

Energy scale from first principles

Theoretical calculation

- the radio signal can be predicted from pure electrodynamics and the well-known physics of the electromagnetic cascade in air showers
- there is no absorption or scattering in the atmosphere
- antenna arrays can be calibrated precisely

 using radio signals, the energy scales of particle detector arrays (which usually rely on hadronic interaction simulations) can be calibrated from first principles!

Measurement

absolute prediction of radiation energy agrees within 5.2% between two independent full Monte Carlo simulations, use for absolute calibration! Gottowik, Glaser, Huege, Rautenberg, Astroparticle Physics 103(2018)87

AERA has measured >500 inclined showers

- air showers up to 88° zenith angle measured
- footprints with radii of more than 2 km in shower plane
- detection with 1.5 km antenna grid would be sufficient

Pierre Auger Coll., JCAP 10(2018)026

100 150 200 250 axis distance [m] P. Schellart, S. Buitink, A. Corstanje, et al., JCAP 10 (2014) 14. CORSIKA Workshop, June 2019 Tim Huege <tim.huege@kit.edu>

31

Karlsruhe Institute of Technology

Radiation energy and energy-scale calibration

Lett. (2016), arXiv:1605.02564.

Tim Huege <tim.huege@kit.edu>

CORSIKA Workshop, June 2019

LOFAR unbinned analysis

S. Buitink et al. Nature 435 (2016) 70

 $a = \frac{\langle X_{\text{proton}} \rangle - X_{\text{shower}}}{\langle X_{\text{proton}} \rangle - \langle X_{\text{iron}} \rangle}$ with simulated distributions result shows large fraction of

light primaries

at 1017-1017.5 eV

distribution of

compare

measured