Proton-Oxygen collisions at the LHC for air shower research

Hans Dembinski, MPIK Heidelberg CORSIKA8 Workshop, Karlsruhe, June 2019

symmetrymagazine.org

Take-home message

- High-energy cosmic rays initiate air showers
 - Cosmic rays isotropic, do not point back to sources, but...
 - Cosmic-ray mass composition tells us about sources
 - Requires accurate simulation of air showers
 - Background for IceCube and future neutrino observatories
 - QCD at 100 TeV scale

Muon Puzzle

- 8o Data/MC mismatch in muon density after combining data from eight leading experiments from 0.5 PeV to 10 EeV
- Potential solution from the LHC
 - Smoking gun: Energy carried by neutral pions too high?
 - proton+oxygen collisions to clarify nuclear effects, planned for 202(3)
- Bonus issue: Muon lateral density profile in 100 GeV showers
 - Cosmic rays background for γ-ray observatories
 - Energies < 1 TeV well covered by fixed target experiments
 - Still large discrepancies between air shower predictions

Sources of cosmic rays?

Sources of cosmic rays unresolvable, because cosmic rays scatter on random magnetic fields (like photons on a foggy day)

Photo by Stephen Crowley on Unsplash

Hans Dembinski | MPIK Heidelberg

Cosmic ray mass

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

Astrophysical origins of cosmic rays?

- Mass composition (<InA>) of cosmic rays carries imprint of sources & propagation
- Uncertainties of <InA> limited by uncertainty in description of hadronic interactions in air showers
- Muon Puzzle: Muon predictions in air showers are inconsistent with X_{max}

Background for PeV neutrinos

- Contrary to original design of IceCube, most extra-terrestrial neutrinos come from above
- 50 % uncertainty in the background: about 30 % from uncertain CR mass composition

UHECR 2018 Report on Muons

Significance of Muon Deviation

EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR, Telescope Array, Yakutsk EAS Array collab. EPJ Web Conf. 210 (2019) 02004

- Relative energy-scale calibration applied to raw data sets
- Line fit to most complete data for EPOS-LHC and QGSJet-II.04
- Careful treatment of reported errors
- Find deviation of slope from zero > 8σ

Collider energies and air showers

SPS (NA61) and LHC cover three orders of magnitude in c.m.s. energy and reach well above the knee

Air shower physics

About 5-7 hadronic interactions, average energy drops by factor 10-100 after each

X_{max} is sensitive to high energy interactions

High-energy sub-showers dominate X_{max}

$N_{\boldsymbol{\mu}}$ is sensitive to high and low energy interactions

 N_µ depends on energy not lost to EM component and energy dispersion among secondary particles

LHC and data on pion production

- Most common interaction in air shower is π +N, use **p**+O as proxy
- Need more data on light hadron production in forward direction
- Do properties scale from **pp** to **pO** to **pPb** or different regimes?

Equivalent c.m. energy√s_{pp} [GeV] 10² 10³ 10⁴

Modify hadronic interaction features

Modified features

 cross-section: inelastic cross-section of all interactions

R. Ulrich et al PRD 83 (2011) 054026

and extrapolate up to 10¹⁹ eV proton shower

Ad-hoc modify features at LHC energy scale with factor f_{LHC-pO}

- hadron multiplicity: total number of secondary hadrons
- elasticity: E_{leading}/E_{total} (lab frame)
- π^0 fraction: (no. of π^0) / (all pions)

Importance of interaction features

940 f

920

900

Modified features

- cross-section: inelastic cross-section of all interactions
- hadron multiplicity: total number of secondary hadrons

Hans Dembinski | MPIK Heidelberg

Uncertainty in hadron spectra

- Simulations done with CRMC
- Model spread: EPOS-LHC, QGSJet-II.04, SIBYLL-2.3

Models mostly tuned to p+p data at $|\eta| < 2$: p+p 10 % model spread, p+O 50 % model spread

Impact of LHC measurements

- X_{max} sensitive to: inel. cross-section, hadron multiplicity
- N_u sensitive to: **energy ratio R**, hadron multiplicity
- Expected: nuclear modification of forward-produced hadrons

 $R = \frac{E_{\pi^0}}{E_{\text{other hadrons}}}$

Possibilities to reduce R

Iso-spin symmetry: $N_{\pi^{+-}} = 2N_{\pi^0}$, but pion/hadron ratio not fixed

pp 13 TeV, EPOS-LHC

Collective effects may reduce pion fraction, EPOS-LHC predicts drop in R at eta = 0 <u>https://arxiv.org/pdf/1902.09265.pdf</u>

Strangeness production underestimated? <u>https://arxiv.org/pdf/1612.07328.pdf</u>

Unexpected enhancement of strangeness observed in central collisions in pp, pPb, PbPb ALICE collab., Nature Phys. 13 (2017) 535

LHCb: a forward spectrometer

JINST 3 (2008) S08005 IJMP A 30 (2015) 1530022

Forward spectrometer

- Fully instrumented at 2 < η < 5
- Very good momentum and vertex resolution
- Good particle identification
- **Optimal**: μ, p, K⁺⁻, π⁺⁻

Nuclear effects

Nuclear modification factor

 $R_{pA} = \frac{\text{cross-section for pPb}}{A \text{ x cross-section for pp}}$

Superposition model: $R_{pA} = 1$

"backward"

Nuclear effects in prompt J/ ψ production

LHCb-PAPER-2017-014

Up to 50 % suppression in forward direction Especially strong where relevant for CR! Similar effects *expected* in pion production

- Model lines **parallel**, because of approx. superposition
- Model line offsets from nuclear effects (forward effects)

Only need to measure pO, not FeO!

Proton-Oxygen at the LHC

Cornell University	We gr the Simons Fo	e gratefully acknowledge support from s Foundation and member institutions.	
arXiv.org > hep-ph > arXiv:1812.06772v1	Search or Article ID	All fields 🗸 🔍	
	(Help Advanced search)		
High Energy Physics – Phenomenology		Download:	
Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams		 PDF Other formats (license) 	
Z. Citron, A. Dainese, J.F. Grosse-Oetringhaus, J.M. Jowett, YJ. Lee, U.A. Wiedemann, M. Winn (editors), A. Andronic, F. Bellini, E. Bruna, E. Chapon, H. Dembinski, D. d'Enterria, I. Grabowska-Bold, G.M. Innocenti, C. Loizides, S. Mohapatra, C.A. Salgado, M. Verweij, M. Weber (chapter coordinators), J. Aichelin, A. Angerami, L. Apolinario, F. Arleo, N. Armesto, R. Arnaldi, M. Arslandok, P. Azzi, R. Bailhache, S.A. Bass, C. Bedda, N.K. Behera, R. Bellwied, A. Beraudo, R. Bi, C. Bierlich, K. Blum, A. Borissov, P. Braun-Munzinger, R. Bruce, G.E. Bruno, S. Bufalino, J. Castillo Castellanos, R. Chatterjee, Y. Chen, Z. Chen, C. Cheshkov, T. Chujo, Z. Conesa del Valle, J.G. Contreras Nuno, L. Cunqueiro	. Winn owska-Bold, oordinators), Azzi, R. Blum, A. Chatterjee, nqueiro	Current browse context: hep-ph < prev next > new recent 1812 Change to browse by: hep-ex nucl-ex nucl-th	
Mendez, T. Dahms, N.P. Dang, H. De la Torre, A.F. Dobrin, B. Doenigus, L. Van Doremale Dubla, M. Dumancic, M. Dyndal, L. Fabbietti, E.G. Ferreiro, F. Fionda, F. Fleuret, S. Floerch Giacalone, A. Giammanco, P.B. Gossiaux, G. Graziani, V. Greco, A. Grelli, F. Grosa, M. Gu Gunii, V. Guzev, C. Hadiidakis, S. Hassani, M. He, I. Helenius, P. Huo, P.M. Jacobs, P. Janu	n, X. Du, A. hinger, G. ilbaud, T.	References & Citations INSPIRE HEP (refers to cited by) NASA ADS 	
Jebramcik, J. Jia, A.P. Kalweit, H. Kim, M. Klasen, S.R. Klein, M. Klusek–Gawenda, J. Kremer, G.K. Krintiras, F. Krizek, E. Kryshen, A. Kurkela, A. Kusina, J.–P. Lansberg, R. Lea, M. van Leeuwen, W. Li, J. Margutti et al. (83 additional authors not shown)		Google Scholar	
		Bookmark (what is this?)	

(Submitted on 17 Dec 2018)

Proposed run schedule

Year	Systems, $\sqrt{s_{_{\rm NN}}}$	Time	$L_{ m int}$
2021	Pb–Pb 5.5 TeV	3 weeks	$2.3~{\rm nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2022	Pb–Pb 5.5 TeV	5 weeks	$3.9~{\rm nb}^{-1}$
	O–O, p–O	1 week	$500 \ \mu { m b}^{-1} \ { m and} \ 200 \ \mu { m b}^{-1}$
2023	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2027	Pb-Pb 5.5 TeV	5 weeks	$3.8~{\rm nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2028	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2029	Pb-Pb 5.5 TeV	4 weeks	3 nb^{-1}
Run-5	Intermediate AA	11 weeks	e.g. Ar–Ar 3–9 pb^{-1} (optimal species to be defined)
	pp reference	1 week	

- 200 μb⁻¹ is enough statistics to push statistical error below 5 % in LHCb
- 2 nb⁻¹ (10 x minimum) will be requested, also allows to measure charm

Bonus issue: Muons in < 100 TeV showers

HAWC, 100 GeV to 100 TeV

CTA (artist impression), 10 GeV to 300 TeV

- Cosmic ray showers background for γ-ray observatories: H.E.S.S., HAWC, CTA, <u>SGSO</u>, ...
- γ-ray selection based on poor muon content
- Relies on MC predictions for $\mu\text{-LDF}$

LDF spread

R.D. Parsons and H. Schoorlemmer, arXiv:1904.0513, submitted to PRD

- CORSIKA simulations
 - 100 GeV to 100 TeV
 - UrQMD for E < 80 GeV
 - Varying high-energy model
- Huge discrepancies in eγ-LDF and μ-LDF in 100 GeV showers
- Correlated effects in LDFs
 - QGSJet-II.04 high
 - UrQMD low

Hans Dembinski | MPIK Heidelberg

Uncertainties from first interaction

R.D. Parsons and H. Schoorlemmer, arXiv:1904.0513, submitted to PRD

- Same simulation for E<80 GeV
 - Discrepancy must be in first interaction
 - Placed observation level 1 cm below interaction to study pions
- Large spread in pion spectra in first interaction
 - EPOS-LHC produces lowest number of high-energy pions at 100 GeV

Hans Dembinski | MPIK Heidelberg

Uncertainties from first interaction

R.D. Parsons and H. Schoorlemmer, arXiv:1904.0513, submitted to PRD

- Same simulation for E<80 GeV
 - Discrepancy must be in first interaction
 - Placed observation level 1 cm below interaction to study pions
- Large spread in pion spectra in first interaction
 - QGSJet-II.04 (UrQMD) produces lowest (highest) average p_T

Hans Dembinski | MPIK Heidelberg

Summary

- Muon Puzzle experimentally established at 8σ
 - Statement by eight leading air shower experiments
 - Problem not in the data, theory has to change
- Key measurements to be done at the LHC
 - Energy ratio R of π^0 to other hadrons at forward rapidity
 - Nuclear modification in forward hadron production
- Proton+oxygen collisions planned for 202(3)
 - Data should be analyzed by ATLAS, CMS, ALICE, LHCb for maximum impact
 - R can be measured with forward calorimeters, no hadron PID!
- Bonus issue: Why air shower simulations differ so much at 100 GeV?
 - Large amount of data on pion production at E < 1 TeV from fixed-target exp.
 - Models should be tuned to this data and agree, but do not
 - Impact of low-energy model? Barely check the low-energy model (FLUKA)
 - CORSIKA8 could generate automatic validation plots for all supported models:
 Compare predictions with available measurements from accelerators

Acknowledgments

 Lead nucleus graphic from Inductiveload - Public Domain: <u>https://commons.wikimedia.org/w/index.php?curid=2858666</u>