

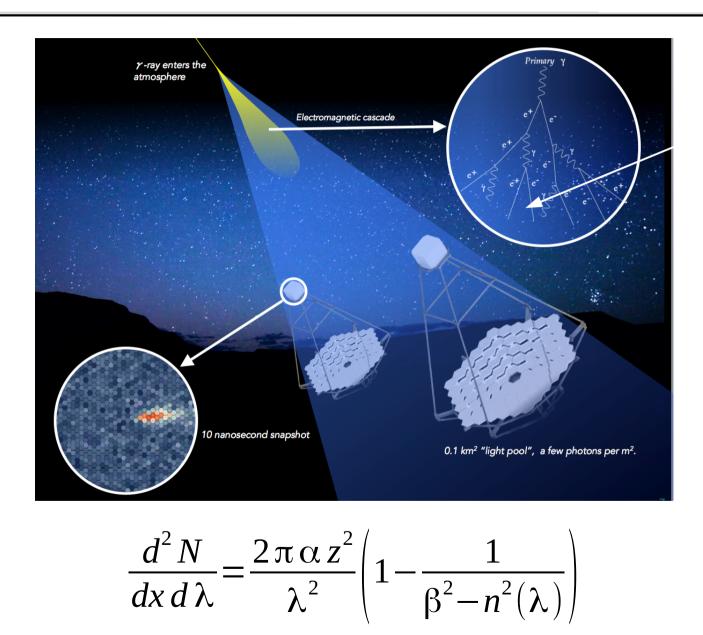
Simulations for the atmosphere with clouds

Mario Pecimotika CORSIKA Cosmic Ray Simulation Workshop Karlsruhe

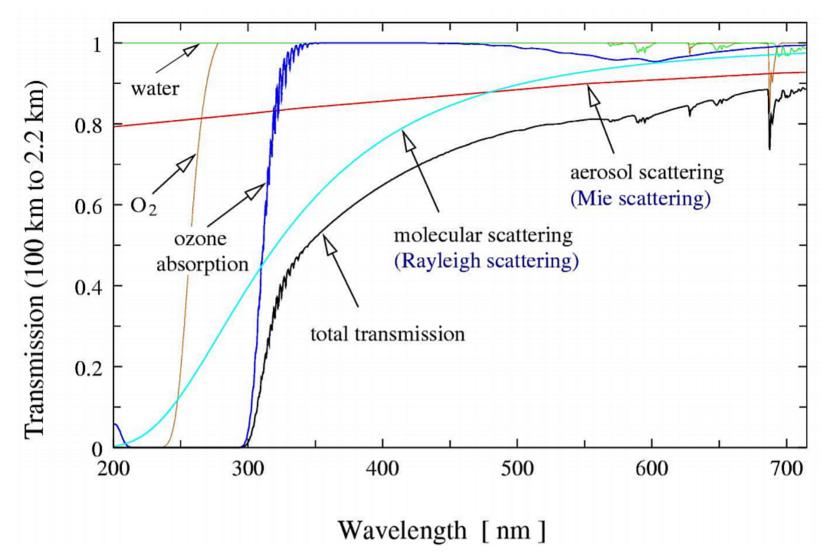
2019/06/20

Outline

- \rightarrow Transmission of Cherenkov light
- \rightarrow Transmittance simulations with MODTRAN
- \rightarrow EASs simulations CORSIKA
- \rightarrow Detector simulations
- \rightarrow Problems
- → Summary

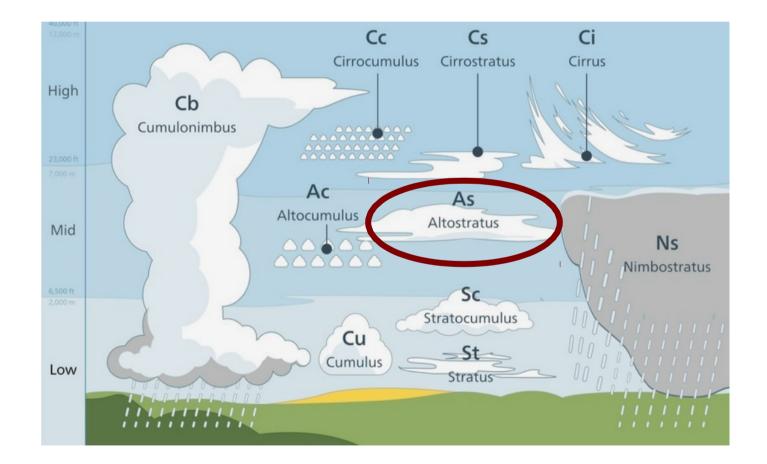

What is the biggest difference between an **air Cherenkov telescopes** in respect to satellites, lab experiments, underground detectors etc?

 \rightarrow At the top of mountains, we are exposed to variable weather conditions.

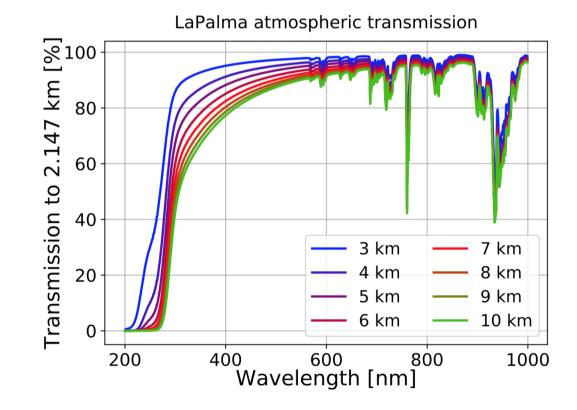

IACT

Transmission of Cherenkov light

Adopted from Bernlöhr, K.


- → MODTRAN 5.2.2 at warp.zeuthen.desy.de
- → Wavelengths range: 203 nm to 999 nm (step 1 nm)
- → Atmospheric model: 6 (US Standard Atmosphere)
- → Zenith angle: 20.0°
- → Ground altitude: 2147 m
- \rightarrow Gray clouds 1 km thick
- \rightarrow Uniform extinction through the cloud

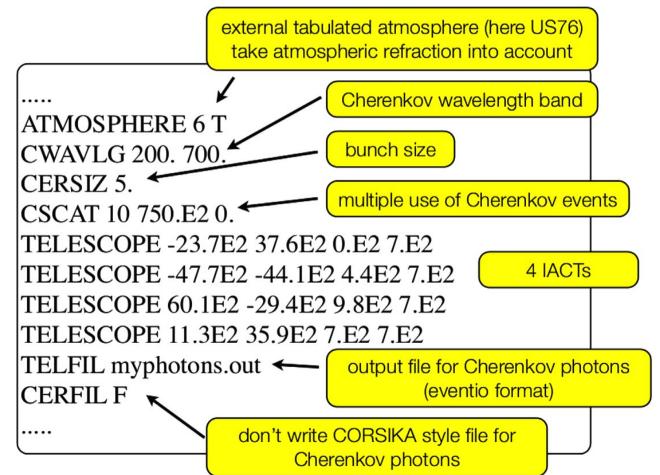
Set NO.	Cloud NO.	Height of cloud base a.g.l. (m)	Total AOD
1	15-20	3000, 5000, 7000, 9000, 11000, 13000	0.05
2	21-26	3000, 5000, 7000, 9000, 11000, 13000	0.1
3	27-32	3000, 5000, 7000, 9000, 11000, 13000	0.2
4	33-38	3000, 5000, 7000, 9000, 11000, 13000	0.3
5	39-44	3000, 5000, 7000, 9000, 11000, 13000	0.5
6	45-50	3000, 5000, 7000, 9000, 11000, 13000	0.7


→ only for altostratus clouds

 \rightarrow for each wavelength and each altitude MODTRAN produce a single number - transmittance

 \rightarrow transmittances are converted to AODs using Python code

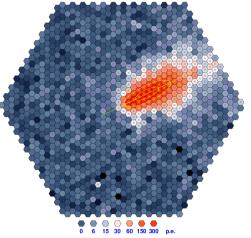
 \rightarrow due to atmospheric conditions, data can be altered; solutions to this problem:


- T: 0.00-0.55 → **reject data**
- T: 0.55-0.85 → apply correction using LIDAR informations
- make special MCs
- \rightarrow adaptive observation scheduling
- → data correction
- \rightarrow duty-cycle prolongation
- \rightarrow the improvement of energy calibrations

→ Using the IACT
option for machine
independent output
based on the *eventio* library

→ Particle interactions
and decays in the
atmosphere up to 10²⁰
eV

→ Simulation carried
on for CTA use QGS-II
model



 \rightarrow Atmospheric transmission can be simulated by CORSIKA or by sim_telarray (the latter is usually preferred because of the flexibility)

→ **sim_telarray** reads extinction coefficient as a function of wavelength, takes care of all the extinction processes relevant for Cherenkov light

→ sim_telarray can accurately simulate: atmospheric transmission, photon ray-tracing through the telescope optical system, shadowing by secondary mirror, camera, masts, camera window transmission, photon detection, trigger electronics, night Sky Background, ...

→ MODTRAN allows changes of cloud parameters (optical depth, thickness) only in combination with MODTRAN predefined atmospheres

 \rightarrow When custom atmosphere is introduced (for La Palma) calculation was possible only for the case of no cloud

 \rightarrow Any impacts of clouds on EAS development?

 \rightarrow CORSIKA is a key tool for CTA - long term support from CTA collaboration

 \rightarrow For CORSIKA 8.0 version: coordinate the needs of the different IACT experimental groups in order to obtain a single, unique Cherenkov module?