
Particle propagation for CORSIKA in
PROPOSAL

Speaker: Jean-Marco Alameddine
19.06.2019

Technische Universität Dortmund



Introduction

PROPOSAL: Tool to propagate particles through
media
→ MC simulations, multivariate statistics

Requirements: Accuracy, performance

Processes: Energy losses, scattering, decays

C++ library with Python bindings

GitHub, UnitTests (Travis CI), … https://github.com/tudo-
astroparticlephysics/PROPOSAL

jean-marco.alameddine@udo.edu 2 / 26



MMC

PROPOSAL v1

PROPOSAL v2

JAVA

C++

modern C++ , Polymorphism, …

jean-marco.alameddine@udo.edu 3 / 26



PROPOSAL code structure

jean-marco.alameddine@udo.edu PROPOSAL code structure 4 / 26



Propagator(const ParticleDef&,
const std::vector<Sector::Definition>&,
const Geometry&,
const InterpolationDef&)

Propagator as base class to propagate a particle

Objects owns all information necessary for propagation

jean-marco.alameddine@udo.edu PROPOSAL code structure 5 / 26



Propagator(const ParticleDef&,
const std::vector<Sector::Definition>&,
const Geometry&,
const InterpolationDef&)

ParticleDef includes static information about particle

→ Wide range of predefined particles available

→ Simple creation of additional particles:

ParticleDef new_particle = ParticleDef::Builder().SetMass(1000).build();

jean-marco.alameddine@udo.edu PROPOSAL code structure 6 / 26



Propagator(const ParticleDef&,
const std::vector<Sector::Definition>&,
const Geometry&,
const InterpolationDef&)

List of Sector::Defintion objects

→ Chain of resposibility: Propagation of our particle through several sectors

→ Each Sector object is responsible for the propagation within its borders

jean-marco.alameddine@udo.edu PROPOSAL code structure 7 / 26



Parameter Description

Medium Medium of the sector
EnergyCutsSettings Stores 𝑒cut and 𝑣cut
Geometry Geometry of the sector
stopping_decay Whether to force a final decay of the particle if its energy

is≤ 𝑒low
cont_rand Whether to use continuous randomization
exact_time Whether to calculate the time exactly out of the tracking

integral or to use 𝑣 = 𝑐 as an approximation
scattering_model Choice of the multiple scattering model
particle_location Location of the particle
utility_def Definition of cross section parameters

Sector::Defintion properties, adapted from arXiv:1809.07740

jean-marco.alameddine@udo.edu PROPOSAL code structure 8 / 26

https://arxiv.org/abs/1809.07740


Propagator(const ParticleDef&,
const std::vector<Sector::Definition>&,
const Geometry&,
const InterpolationDef&)

Geometry describing the detector

Different options for particle infront / inside / behind the detector volume

jean-marco.alameddine@udo.edu PROPOSAL code structure 9 / 26



Propagator(const ParticleDef&,
const std::vector<Sector::Definition>&,
const Geometry&,
const InterpolationDef&)

InterpolationDef as an optional parameter

→ When used, calculated crosssections (and several derived values) are saved in
interpolation tables

→ Error of interpolation compared to integration:≤ 10−5

→ Performance increased by several orders of magnitude

jean-marco.alameddine@udo.edu PROPOSAL code structure 10 / 26



Propagator::Propagator(const ParticleDef& particle_def,
const std::string& config_file)

Simple usage of a configuration (json) file is possible

jean-marco.alameddine@udo.edu PROPOSAL code structure 11 / 26



1 {
2 "global":
3 {
4 "seed" : 1,
5 "continous_loss_output" : false,
6 "only_loss_inside_detector" : false,
7

8 "interpolation":
9 {
10 "do_interpolation" : true,
11 "path_to_tables" : ["resources/tables"],
12 },
13

14 "exact_time" : true,
15 "stopping_decay" : true,
16 "scattering" : "Highland",
17

18 "brems" : "BremsAndreevBezrukovBugaev",
19 "photo" : "PhotoButkevichMikhailov",

20 "lpm" : false,
21 "photo_hard_component" : true,
22 "photo_shadow" : "ShadowButkevichMikhailov",
23 },
24

25 "sectors": [
26 {
27 "hierarchy": 0,
28 "medium": "ice",
29 "density_correction": 1,
30

31 "geometry":
32 {
33 "shape": "sphere",
34 "origin": [0, 0, 0],
35 "outer_radius": 6374134000000,
36 "inner_radius": 0
37 },
38 ...

jean-marco.alameddine@udo.edu PROPOSAL code structure 12 / 26



Propagation algorithm

jean-marco.alameddine@udo.edu Propagation algorithm 13 / 26



std::vector<DynamicData*> Propagator::Propagate(double MaxDistance_cm)

Choose next Sector

Propagate in chosen Sector
until MaxDistance reached
or sector border reached

Particle did not reach
MaxDistance, did not de-
cay, energy not below 𝑒low

jean-marco.alameddine@udo.edu Propagation algorithm 14 / 26



double Sector::Propagate(double distance)

Remember: Differentiate between continuous losses and stochastic losses !

𝑣 < 𝑣cut
continuous losses

𝑣 > 𝑣cut
stochastic losses

with 𝑣cut = min [𝑒cut/𝐸, 𝑣′cut]

jean-marco.alameddine@udo.edu Propagation algorithm 15 / 26



double Sector::Propagate(double distance)

Remember: Differentiate between continuous losses and stochastic losses !

∗
stoch.

∗
stoch.

∗
stoch.

continuous continuous

jean-marco.alameddine@udo.edu Propagation algorithm 16 / 26



Sample energy when next interac-
tion occurs (stochastic loss or decay)

Sample energy when next interac-
tion occurs (stochastic loss or decay)

Calculate displacement
until next interaction

Calculate displacement
until next interaction

Sample scattering

Sample scattering

Continuous randomization

Continuous randomization

Calculate final energy
until sector border

Calculate final energy
until sector border

displacement overshoots border limit

jean-marco.alameddine@udo.edu Propagation algorithm 17 / 26



Sample energy when next interac-
tion occurs (stochastic loss or decay)
Sample energy when next interac-

tion occurs (stochastic loss or decay)

Calculate displacement
until next interaction

Calculate displacement
until next interaction

Sample scattering

Sample scattering

Continuous randomization

Continuous randomization

Calculate final energy
until sector border

Calculate final energy
until sector border

displacement overshoots border limit

jean-marco.alameddine@udo.edu Propagation algorithm 17 / 26



Sample energy when next interac-
tion occurs (stochastic loss or decay)

Sample energy when next interac-
tion occurs (stochastic loss or decay)

Calculate displacement
until next interaction
Calculate displacement
until next interaction

Sample scattering

Sample scattering

Continuous randomization

Continuous randomization

Calculate final energy
until sector border

Calculate final energy
until sector border

displacement overshoots border limit

jean-marco.alameddine@udo.edu Propagation algorithm 17 / 26



Sample energy when next interac-
tion occurs (stochastic loss or decay)

Sample energy when next interac-
tion occurs (stochastic loss or decay)

Calculate displacement
until next interaction

Calculate displacement
until next interaction

Sample scattering

Sample scattering

Continuous randomization

Continuous randomization

Calculate final energy
until sector border

Calculate final energy
until sector border

displacement overshoots border limit

jean-marco.alameddine@udo.edu Propagation algorithm 17 / 26



Sample energy when next interac-
tion occurs (stochastic loss or decay)

Sample energy when next interac-
tion occurs (stochastic loss or decay)

Calculate displacement
until next interaction

Calculate displacement
until next interaction

Sample scatteringSample scattering

Continuous randomization

Continuous randomization

Calculate final energy
until sector border

Calculate final energy
until sector border

displacement overshoots border limit

jean-marco.alameddine@udo.edu Propagation algorithm 17 / 26



Sample energy when next interac-
tion occurs (stochastic loss or decay)

Sample energy when next interac-
tion occurs (stochastic loss or decay)

Calculate displacement
until next interaction

Calculate displacement
until next interaction

Sample scattering

Sample scattering

Continuous randomizationContinuous randomization

Calculate final energy
until sector border

Calculate final energy
until sector border

displacement overshoots border limit

jean-marco.alameddine@udo.edu Propagation algorithm 17 / 26



0.0 0.2 0.4 0.6 0.8 1.0

Final energy / MeV ×108

10−1

100

101

102

103

N

vcut = 0.05

vcut = 10−4

vcut = 0.05 with cont.

Propagation of 104 muons with energy 108 MeV through 300m of standard rock.

jean-marco.alameddine@udo.edu Propagation algorithm 18 / 26



Continuous randomization

Sample type of
stochastic loss

Sample type of
stochastic loss

Sample decay

Sample decay

Sample energy loss

Sample energy loss

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

jean-marco.alameddine@udo.edu Propagation algorithm 19 / 26



Continuous randomization

Sample type of
stochastic loss

Sample type of
stochastic loss

Sample decaySample decay

Sample energy loss

Sample energy loss

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

jean-marco.alameddine@udo.edu Propagation algorithm 19 / 26



Continuous randomization

Sample type of
stochastic loss
Sample type of
stochastic loss

Sample decay

Sample decay

Sample energy loss

Sample energy loss

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

jean-marco.alameddine@udo.edu Propagation algorithm 19 / 26



Continuous randomization

Sample type of
stochastic loss

Sample type of
stochastic loss

Sample decay

Sample decay

Sample energy lossSample energy loss

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

jean-marco.alameddine@udo.edu Propagation algorithm 19 / 26



Continuous randomization

Sample type of
stochastic loss

Sample type of
stochastic loss

Sample decay

Sample decay

Sample energy loss

Sample energy loss

Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed
Repeat algorithm if 𝐸 > 𝑒low
and particle has not decayed

jean-marco.alameddine@udo.edu Propagation algorithm 19 / 26



std::vector<DynamicData*> Propagator::Propagate(double MaxDistance_cm);

Return value: List of DynamicData objects, including
1. Stochastic losses (type, energy, position, time, …)
2. Decay particles (no redundant static information!)
3. Produced particles (e.g. muon pair)
4. (Continuous losses)

jean-marco.alameddine@udo.edu Propagation algorithm 20 / 26



C++ code example
1 Propagator prop(MuMinusDef::Get(), "resources/config.json");
2 Particle& mu = prop.GetParticle();
3 Particle mu_backup(mu);
4

5 mu_backup.SetEnergy(9e6); //energy in MeV
6 mu_backup.SetDirection(Vector3D(0, 0, -1));
7

8 std::vector<double> ranges;
9

10 for (int i = 0; i < 10; i++){
11 mu.InjectState(mu_backup);
12 prop.Propagate();
13 ranges.push_back(mu.GetPropagatedDistance());
14 }

jean-marco.alameddine@udo.edu Propagation algorithm 21 / 26



Python code example
1 prop = pp.Propagator(particle_def=pp.particle.MuMinusDef.get(),
2 config_file="path/to/config.json")
3 mu = prop.particle
4 mu_backup = pp.particle.Particle(mu)
5

6 mu_backup.energy = 9e6 #energy in MeV
7 mu_backup.direction = pp.Vector3D(0, 0, -1)
8

9 ranges = []
10

11 for i in range(10):
12 mu.inject_state(mu_backup)
13 secondaries = prop.propagate()
14 ranges.append(prop.particle.propagated_distance)

jean-marco.alameddine@udo.edu Propagation algorithm 22 / 26



PROPOSAL changes for CORSIKA

jean-marco.alameddine@udo.edu PROPOSAL changes for CORSIKA 23 / 26



Displacement calculation

−𝑓 (𝐸) = ∑
crosssec.

∑
comp.

d𝐸
d𝑥

Homogeneousmedium:

−𝑓 (𝐸) 𝜌0 = d𝐸
d𝑥

d𝑥 = − 1
𝜌0

d𝐸
𝑓 (𝐸)

𝑥𝑓 = 𝑥𝑖 −
1
𝜌0

∫
𝐸𝑓

𝐸𝑖

d𝐸
𝑓 (𝐸)

Non-homogeneousmedium

−𝑓 (𝐸) 𝜌 (𝑥) = d𝐸
d𝑥

d𝑥𝜌 (𝑥) = − d𝐸
𝑓 (𝐸)

∫
𝑥𝑖

𝑥𝑓

d𝑥𝜌 (𝑥) = −∫
𝐸𝑓

𝐸𝑖

d𝐸
𝑓 (𝐸)

solve for 𝑥𝑓

jean-marco.alameddine@udo.edu PROPOSAL changes for CORSIKA 24 / 26



Future work

Check / include cross sections for electron / positron propagation

Photon propagation

→ Comparison with EGS4

Magnetic field deflection

jean-marco.alameddine@udo.edu PROPOSAL changes for CORSIKA 25 / 26



https://github.com/tudo-
astroparticlephysics/PROPOSAL

https://arxiv.org/abs/1809.07740

PROPOSALmay be modified and distrubuted under terms of a modified LGPL license.
More information on our GitHub page.

jean-marco.alameddine@udo.edu PROPOSAL changes for CORSIKA 26 / 26



Backup slides



Propagation

d𝜎
d𝑣

⟶⏟
?

energy losses

jean-marco.alameddine@udo.edu Backup slides 2 / 14



Propagation

𝑣 < 𝑣cut
continuous losses

𝑣 > 𝑣cut
stochastic losses

with 𝑣cut = min [𝑒cut/𝐸, 𝑣′cut]

jean-marco.alameddine@udo.edu Backup slides 3 / 14



Propagation

Calculate energy at which
a stochastic loss occurs

Calculate type of stochastic loss

Sample the stochastic energy loss via:
1
𝜎 ∫𝑣(𝜉)

𝑣cut
d𝜎
d𝑣d𝑣 = 𝜉

Repeat until 𝐸 < 𝑒0 or
particle reaches section border

jean-marco.alameddine@udo.edu Backup slides 4 / 14



Standard interactions:
𝑒 pair production
Bremsstrahlung
Photonuclear
Ionization

Rare interactions:
𝜇 pair production
Weak interaction

→ Negligible contribution to overall
energy loss

→ Observable, interesting signature

jean-marco.alameddine@udo.edu Backup slides 5 / 14



3 4 5 6 7 8
log(E v / MeV)

10 1

100

101

102

103

104

N

Sum
e Pair production
Bremsstrahlung
Photonuclear
Ionization

Propagation of 104 muons with energy 108 MeV through 100m of standard rock.

jean-marco.alameddine@udo.edu Backup slides 6 / 14



Direct Production of Muon Pairs

𝜇i

𝜇f

𝜇+

𝜇−

𝑍 𝑍′

Energy fraction transferred to the muon
pair:

𝑣 =
(𝜖+ + 𝜖−)

𝐸

Asymmetry parameter:

𝜌 =
(𝜖+ − 𝜖−)
(𝜖+ + 𝜖−)

𝐸: Initial energy of the incoming muon 𝜇i
𝜖±: Energy of the produced (anti)muon

jean-marco.alameddine@udo.edu Backup slides 7 / 14



Double-differential cross section

For production of muon pairs 1:

d𝜎
d𝑣d𝜌

= 2
3𝜋

(𝑍𝛼𝑟𝜇)2 1 − 𝑣
𝑣

𝛷(𝑣, 𝜌) ln (𝑋)

For production of electron positron pairs 2:

d𝜎
d𝑣d𝜌

= 2
3𝜋

𝑍 (𝑍 + 𝜉) (𝛼𝑟𝑒)
2 1 − 𝑣

𝑣
(𝛷𝑒 + 𝑚2

𝑒
𝑚2

𝜇
𝛷𝜇)

1Kelner, Kokoulin, Petrukhin: Phys. of Atomic Nuclei, Vol. 63, No. 9, 2000, pp. 1603-1611
2Kokoulin, Petrukhin: Proceedings of 12th ICCR, 1971, p. 2436

jean-marco.alameddine@udo.edu Backup slides 8 / 14



Continous energy loss per
distance

−⟨d𝐸
d𝑥

⟩ = 𝐸𝑁A

𝐴
∫

𝑣cut

𝑣min

𝑣d𝜎
d𝑣

d𝑣

with

𝑣min =
2𝑚𝜇

𝐸
,

𝑣max = 1 −
𝑚𝜇

𝐸
.

102 103 104 105 106 107 108 109

10 10

10 7

10 4

10 1

102

(dE dX
)/

M
eV

g
1 c

m
2

EPair
MuPair

102 103 104 105 106 107 108 109

E / MeV

10 5

10 4

10 3

(dE dX
)

/(
dE dX

)e

Comparion of 𝑒-pair and 𝜇-pair production, only
continous losses (i.e. 𝑣cut = 𝑣max).

jean-marco.alameddine@udo.edu Backup slides 9 / 14



3 4 5 6 7 8
log(E v / MeV)

10 1

100

101

102

103

104

105

106

N

Sum
 Pair production

e Pair production
Bremsstrahlung
Photonuclear
Ionization process 𝑁/𝑁ges 𝐸/𝐸ges

𝑒 pairp. 0,94 0,94
Ioniz. 4 ⋅ 10−2 5 ⋅ 10−2

Brems. 1 ⋅ 10−2 7 ⋅ 10−3

Photon. 8 ⋅ 10−3 6 ⋅ 10−3

𝜇 pairp. 6 ⋅ 10−5 5 ⋅ 10−5

Stochastic losses, standard rock, 106 muons with𝐸 = 108 MeV, 𝑒cut = 500MeV, 𝑣cut = 5 ⋅ 10−2.

jean-marco.alameddine@udo.edu Backup slides 10 / 14



0.0 0.2 0.4 0.6 0.8 1.00

5000

10000

15000

20000

25000

30000

35000

40000

N

v = 0.1
v = 0.5
v = 0.8

Sampling of 𝜌 for muons with𝐸 = 1 ⋅ 106 MeV and different 𝑣 in standard rock.

jean-marco.alameddine@udo.edu Backup slides 11 / 14



Weak interaction

𝑊

𝑙 𝜈

𝑁 𝑁 ′

Highly suppressed process
Similarities with ”lollipop” signature in
𝜏-events
Crossing symmetry3:

d𝜎 (𝜇𝑍 → 𝜈𝜇𝑍) = 1
2
d𝜎 (𝜈𝜇𝑍 → 𝜇𝑍)

3Sandrock, Alexander: Higher-order corrections to the energy loss cross sections of high-energy
muons, 2018, pp. 38-40

jean-marco.alameddine@udo.edu Backup slides 12 / 14



Future: Physical improvements in PROPOSAL

Improvement of electron propagation

Propagation of high-energy photons

Deflection of particles in magnetic fields

Propagation throughmedia with non-homogenous density

jean-marco.alameddine@udo.edu Backup slides 13 / 14



https://github.com/tudo-
astroparticlephysics/PROPOSAL

https://arxiv.org/abs/1809.07740

PROPOSALmay be modified and distrubuted under terms of a modified LGPL license.
More information on our GitHub page.

jean-marco.alameddine@udo.edu Backup slides 14 / 14


	PROPOSAL code structure
	Propagation algorithm
	PROPOSAL changes for CORSIKA
	Anhang
	Backup slides


