SPAM with CORSIKA

Jan Ebr Institute of Physics, Prague

Ebr, Ridky, Necesal, Astropart.Phys.90:37-49,2017

Overview

- DELPHI muon bundles from cosmic rays: excess of high-energy muons from moderate-energy CR showers
 - connection to UHECR excesses can (but won't) be argued
- Re-investigation with modern CORSIKA and interaction models
- Single-Particle Addition Model as a proposed "solution"
- Results: a lot of highly confusing plots
- Experience with using CORSIKA and personnal opinions

DELPHI as a cosmic ray detector

- rock overburden: vertical cutoff ~ 52 GeV
- cosmic measurement in concurrence with normal run: effective uptime ~ 18 days

Bundles of parallel tracks in HCAL

- not every muon reconstructed (shadowing, saturation, non-active areas)
- high-multiplicity events mainly from EAS between 10¹⁵–10^{17.5} eV

 $DPH_{20} = 2.24 \pm 0.17$ $DPH_{80} = 1.45 \pm 0.23$

DELPHI Collaboration, Astropart.Phys.28:273-286,2007

DELPHI simulations

- whole relevant energy range (10¹⁴–10¹⁸ eV), spectrum and chemical composition from KASCADE + Grande
- simple "toy DELPHI"
 to roughly reproduce the response of the system to EAS
- fit of efficiency and saturation

model	DPH_{20}	DPH_{80}	DPH_{20}	DPH_{80}
composition	p only	Fe only	mixed	mixed
QGSJET01	1.00	1.00	1.43	0.70
QGSJET-II-03	1.11	0.75	1.54	0.57
QGSJET-II-04	1.11	1.37	1.72	0.83
EPOS-LHC	0.85	0.86	1.27	0.59

 $DPH_{20} = 2.24 \pm 0.17$ $DPH_{80} = 1.45 \pm 0.23$

Auger simulations

- Auger depth of maximum constrains models (no lighter than protons)
 simulations at 3.2×10¹⁸ eV
- Some amount of muon excess on Auger
 - increasing muon production would be nice
 - reading out N_{μ} at 1000 meters using NKG fit between 250–1500 meters

Soft-particle addition model

particles: π , K, p, n colour: (NWT+NWP)^{η} distribution $p \exp(-p/p_0)$ angle: within 1° 0.1° from axis in c.m.s. shape: energy treshold (or special p_0) filled vs. empty: p_0

SPAM: DELPHI data at multiplicities >20

SPAM: DELPHI data at multiplicities >80

SPAM: total number of added particles

SPAM: DELPHI vs. Auger X_{max}

SPAM: Auger X_{max} vs. number of muons (protons)

11/17

SPAM: Auger X_{max} vs. number of muons (irons)

SPAM: Auger X_{max} vs. RMS (protons)

SPAM: Auger X_{max} vs. RMS (irons)

CORSIKA simulations

• (part of) Prague ~8000 CPU cluster

- long development of SPAM -> many centuries of CPU time

- own utility to manage simulations:
 - ~300 lines of Pascal
 - produce steering files from table, babysit the jobs
 - CORSIKA steering format easy to generate from any software
 - switch to HTCondor -> a lot of funcitons obsolete
- DELPHI: no thinning (for muon tracking)
 - no EM cascade simulated
 - ECUTS 53.0 53.0 100.0 100.0
 - all relative to QGSJET-01 (still availabe in new CORSIKA)
- Data processed in Pascal/bash/GNUplot
 - ASCII output from CORSIKA easy to work with in any language
 - .long files a bit confusing, extraction of fluorescence profile unclear

Modifying interactions CORSIKA

- Own Fortran code within CORSIKA subroutine that calls HE model
 - let the model run, then modify produced particles
 - lower energy of all particles, add new ones (all in CMS)
 - after boost back, usually some minor imbalance
 - conserving 4-momentum in full 3D not easy
 - additional simple changes to steering code to allow own keywords
- The experiences of a very bad programmer:
 - the preprocessor system makes original source unreadable
 - work on the "-compilefile.f"
 - fast and easy to recompile, but cannot change HE model etc.
 - simplicity of Fortran code allows fast learning curve
 - particles just in an array, most variables explained in source, so implementing the actual model was rather easy
 - anything else a bit difficult reading files, passing configuration etc...
 - lack of scoping prone to weird side effects (crashes with FLUKA)
- Data processed in Pascal/bash/GNUplot
 - ASCII output from CORSIKA easy to work with in any language
 - .long files a bit confusing, extraction of fluorescence profile unclear

My wishes for CORSIKA 8

- Keep providing plaintext input/output interface
 - allow the user to use the tools they like: can't foresee tastes of every user
 - simple, human-readable files have unbeatable portability
 - saving outputs only in ROOT is a terrible idea
- Allow modification of interactions by outsiders
 - easy access to secondaries and easily adding/changing/removing them
- "Easy" means being able to do it without:
 - complex C++ magic
 - using a lot of things from CORSIKA-specific framework and libraries
 - understanding details of a complex build system

• Always remember that the user may be somewhat acceptable with physics, but unimaginably bad with computers!