
L.	
 Arrabito1,	
 J.	
 Bregeon1,	
 	
 	

P.	
 Langlois2,	
 D.	
 Parello2,	
 G.	
 Revy2

1LUPM CNRS-IN2P3 France
2DALI UPVD-LIRMM France

CORSIKA	
 7	
 OpBmizaBon	

CORSIKA Workshop 17th – 20th June 2019, Karlsruhe 1	

Plan

•  Motivations for CORSIKA 7 Optimization
•  Profiling
•  Vectorization of the Cherenkov module
•  Performance results
•  Conclusions and plans

2	

CORSIKA for CTA

•  Detailed simulation of
showers initiated by high
energy cosmic rays

•  Customized external
packages for
electromagnetic and hadron
interactions (mostly Fortran)

•  IACT/atmo package (written
in C)
–  Extension to CORSIKA to

implement arrays of
Cherenkov telescopes

–  Use of external
atmospheric models

–  Propagation of Cherenkov
light in the atmosphere with
refraction

3	

Motivations for CORSIKA optimization

•  MC simulations in CTA are the most CPU consuming task
–  70% in CORSIKA and 30% in telescope simulation

•  Massive MC simulations run on the grid since 2012 to assess CTA
design
–  Consuming 100-200 M HS06 CPU hours/year

•  High CPU requirements are expected also during CTA operations
•  Even a small speed-up will save millions of CPU hours

4	

Running jobs by site since Jan. 2018

8000	
 jobs	

Reference setup

•  Dedicated server
–  x86_64 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz running

CentOS Linux release 7.4 - 64 bits
•  Running with standard CTA production parameters

–  qgs2 interaction model
–  PRIMARY gamma point source
–  THETAP 20 and PHIP 180
–  ERANGE 3.0 330E3 and ESLOPE -2.0
–  CSCAT 10 2000e2 0.
–  External Atmosphere
–  Using keep-seeds option for random number generation to obtain

reproductible runs
–  1000-5000 showers run

5	

Linux	
 perf	
 +	
 FlameGraph	
 	

Profiling CORSIKA 6/IACT 1.51

•  88% CPU in CERENK
•  55% raybnd (IACT/atmo)
•  14% sincos
•  8% telout
•  ...
•  Note: LONGI disabled

6	

•  IACT 1.51
–  ‘Old’ atmospheric interpolation scheme (see slide 7)

•  Work started in early 2018 with CORSIKA 6/IACT 1.51
•  Profiling for CTA ‘standard’ running conditions

Profiling CORSIKA 6/IACT 1.51

•  Most of the CPU spent in mathematical functions and

atmospheric/refraction profile interpolation
–  32% exp (used for atmospheric profile interpolation)
–  33% sincos/asin
–  21% atmospheric interpolation with binary search

•  Very frequently called function, once per photon bunch
•  Computations on photon bunch propagation are independent

–  Good candidates for vectorization
 Choose to start optimizing raybnd/CERENK using
 vectorization techniques

7	

exp	
 binary	
 search	

•  Zoom on raybnd

exp	
 asin/sincos	

Profiling CORSIKA 7/IACT 1.59

•  CERENK: 80%
•  raybnd: 37%
•  sincos: 19%
•  telout: 11%
•  rmmard: 4%
•  Note: LONGI disabled

8	

•  IACT 1.59
–  New faster interpolation scheme (by Konrad Bernlohr)

•  Using fast interpolation throughout (no binary search anymore)
•  Avoiding exp calls in the interpolation process

–  In raybnd: 67% CPU in asin/sincos

Zoom on raybnd

Linux	
 perf	
 +	
 FlameGraph	
 	

Shower	
 ParBcle	
 track	

Track	
 step	

Track	
 sub-­‐step	

Atmosphere	

(n,	
 δ,	
 η,	
 T,	
 ...)	

Cherenkov production and propagation

9	

EGS4/SHOWER/ELECTR	

-­‐	
 Shower	
 development	

-­‐	
 Transport	
 of	
 	

electron/positron	

CERENK	

-­‐	
 Nb	
 of	
 emiCed	
 	

Cherenkov	
 photons	

-­‐	
 Grouped	
 in	
 bunches	

raybnd	

-­‐	
 DeviaHon	
 of	
 	

photon	
 bunches	
 by	
 	

atmospheric	
 refracHon	

telout	

-­‐	
 Record	
 coordinates	
 	

of	
 photon	
 bunches	

hiIng	
 the	
 telescopes	

Possible	
 VectorizaBon	
 	

to	
 treat	
 mulBple	
 bunches	
 	

together	

Vectorization

•  Variables stored in vector registers
•  SIMD (Single Instruction on

Multiple Data) instructions
–  Perform the same operation on

multiple variables in parallel
•  Most common SIMD instructions

–  +, -, *, /, mask, horizontal
operations etc.

•  AVX2
–  Registers of 256 bits

•  4 doubles or 8 floats
–  Commonly available in computing

centers (e.g. grid sites)
•  AVX512

–  Registers of 512 bits
•  8 doubles or 16 floats

10	

AVX2	

AVX512	

Vectorization techniques

•  Explicit calls to low level SIMD instructions (intrinsics)
–  Complex syntax
–  Architecture dependent

•  Using vector libraries
–  Provide an abstraction of low level SIMD instructions
–  Portable on different architectures

•  Auto-vectorization
–  The compiler automatically detects vectorizable patterns and

perform the vectorization
–  It works with ‘simple patterns’
–  Enabled by compiler flags: e.g. -03, -mavx2

11	

Vector libraries

•  Provide an abstraction of low level SIMD instructions (intrinsics)
–  Allow to transparently vectorize arithmetics expression (+, -, /, *) on different

architectures
•  Vc

–  https://github.com/VcDevel/Vc
–  SSE4, AVX, AVX-2

•  UME::SIMD -> Tested
–  https://github.com/edanor/umesimd
–  SSE4, AVX, AVX-2, AVX-512
–  Support of some vectorized mathematical functions but not really optimized

•  bSIMD -> Tested
–  https://developer.numscale.com/bsimd/documentation/v1.17.6.0/
–  Only partially open source
–  SSE4, AVX, AVX-2, AVX-512

•  xsimd
–  https://github.com/QuantStack/xsimd

•  VecCore (CERN project)
–  https://github.com/root-project/veccore
–  Uses Vc and UME::SIMD as backend

12	

Vectorized math libraries

•  Implement vectorized version of mathematical functions
–  exp, log, sin, cos, acos, asin, sqrt, cbrt, ...
–  They are less accurate than standard scalar libm but enough for many

applications
•  Intel’s SVML

–  https://software.intel.com/en-us/node/583201
•  AMDs libm

–  http://developer.amd.com/tools-and-sdks/archive/libm
•  GNU’s libmvec (open source) -> Tested

–  gcc > 4.9.0
–  glibc > 2.26
–  Enabled by ffast-math flag
–  https://sourceware.org/glibc/wiki/

•  CERN’s VDT (backend of VecCore) (open source) -> Tested
–  https://github.com/dpiparo/vdt
–  http://iopscience.iop.org/article/10.1088/1742-6596/513/5/052027/pdf

•  SIMD vector libm (open source) -> Tested
–  https://gitlab.com/cquirin/vector-libm
–  https://hal.archives-ouvertes.fr/hal-01511131/document

13	

CORSIKA 7 optimization strategy 1/2

1.  Test automatic optimizations by compiler
–  No change in the code
–  Extensive tests done with several gcc flags -> No significant gain

2.  Manual code transformation
–  Vectorize as much as possible: raybnd, CERENK (and CERLDE)
–  CERENK re-written in C for an easier code transformation
–  ‘Incremental’ transformations
–  Evaluate the speed-up of each transformation

14	

CORSIKA 7 optimization strategy 2/2

•  Choose the auto-vectorization approach
–  No use of machine dependent SIMD instructions (intrinsics)
–  No external dependencies on vector libraries
–  It needs to transform the code to allow the compiler to detect

vectorizable patterns
•  Use of the SIMD vector libm only for vectorizing mathematical

functions (exp, cos, sin, etc.)
–  https://gitlab.com/cquirin/vector-libm

15	

Vectorization of raybnd, CERENK,
CERLDE 1/3

•  Code transformations
–  Unroll the sub-step loop in CERENK containing the call to raybnd

•  Allows to pass 4-lenght vectors to raybnd instead of scalars

–  Restructure the ‘if’ tests
–  Isolate computations to facilitate the detection of vectorizable

loops by compiler
–  Inlining CERLDE

•  Compiler flags: -O3, -mavx2
•  Check that vectorization is effective by looking at the

assembler code

16	

Vectorization of raybnd, CERENK,
CERLDE 2/3

•  Example of transformation in raybnd

17	

Original	
 version	

Op4mized	
 version	

Vectorization of raybnd, CERENK,
CERLDE 3/3

•  Example of transformation in raybnd
–  Using the SIMD vector libm for vectorizing mathematical functions,

e.g. sin, cos, etc.

18	

Original	
 version	

Op4mized	
 version	

Performance measurements and
validation

•  Performance measurements with ‘perf stat’ (e.g. number of
cycles, elapsed time, etc.)

•  Speed-up = ExecutionTime(ref_ver)/ExecutionTime(opt_ver)
•  Validation

–  Read photon bunches coordinates in the CORSIKA output
•  x, y, cosx, cosy, arrival time

–  Compare with the reference version using
•  read_cta program (by Konrad Bernlhor)
•  Python library: https://github.com/cta-observatory/pyeventio

19	

Performance results

•  Final results obtained with
–  Compiler: gcc 8.2.1
•  Compilation flags: -O3 -mavx2
•  CentOS 7 (with AVX2)

•  Speed-up
•  raybnd vectorized only: 1.21
•  raybnd+cerenk vectorized: 1.52
•  raybnd+cerenk vectorized on AVX 512: 1.60

•  Optimized versions validated against the reference version

20	

Report on CTAOptSim Workshop

•  ‘CTAOptSim’ Workshop (supported by CNRS as ‘Astro-
Informatique’ project) held in Montpellier, December 2018
–  https://gite.lirmm.fr/cta-optimization-group/cta-optimization-project/

wikis/lupm_december_2018
•  Focus on optimization of MC simulation codes

–  Collect ideas to design CORSIKA 8 with optimization in mind
•  Talks on:

–  CORSIKA 8 and CORSIKA application in CTA
–  GEANT4, GeantV
–  Vectorization and math libraries
–  Numerical accuracy

•  Bringing together physicists, simulation experts and computer
scientists (from CERN, KIT, CTA Consortium and University of
Perpignan)

21	

Conclusions and plans

•  Good progress made on CORSIKA 7 optimization using auto-
vectorization in Cherenkov module
•  Speed-up 1.52

•  A few jobs run on the grid to check the portability and the
speed-up results -> To be done at a larger scale

•  Future plans for optimization
•  Memory access patterns
•  Eventual precision reduction in some parts of the code

•  PhD on CORSIKA 7 optimization and contribution to CORSIKA
8 project will start in October 2019 at LUPM and University of
Perpignan

22	

