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Laser-Wakefield Acceleration
Invented by Tajima & Dawson, 1979

Short-pulse high-power lasers no where near 
existence

used computer simulations that today a cell 
phone could do in a fraction of the time



Electron in strong electromagnetic field I

Plane wave, linearly polarized along y direction

⃗El(x, t) = ̂yE0 cos(klx − ωlt)
⃗Bl(x, t) = ̂zB0 cos(klx − ωlt)

kl =
2π
λl

ωl

: wavenumber

: angular frequency



Electron in strong electromagnetic field II

e in plane e-m wave (non-relativistic)

d ⃗pe

dt
= ⃗F L Lorentz force

d
dt

(m ⃗ve) = − e( ⃗E l + ⃗ve × ⃗B l)
⃗El(x, t) = ̂yE0 cos(klx − ωlt)

⃗Bl(x, t) = ̂zB0 cos(klx − ωlt)

B0 =
E0

c
-> for ve <<c : v x B term negligible 

⃗ve(t) = ̂y
eE0

mωl
sin(klx − ωlt)

y(t) =
eE0

mω2
l

cos(klx − ωlt)



Electron in strong electromagnetic field III

Maximum velocity ⃗ve(t) = ̂y
eE0

mωl
sin(klx − ωlt)

vmax =
eE0

mωl



Interpretation of a0



Example: normalized laser field 100 TW
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source: NASA

Plasma
“fourth state of matter”

consists of separated positive and 
negative charges (e.g. ionized gas)

electrically neutral

by separating electrons from the 
ions, enormous electric fields can be 
generated

Unlike electrons, ions are static on 
the timescales of the interaction (ion 
movement on ∼0.1 ns - scale) due to 
higher mass



Plasma properties: Plasma oscillations

displacement of electrons

creates regions of positive 
and negative charges

sets up restoring electrical 
field

electrons are accelerated 
back, overshoot

harmonic oscillation with 
“plasma frequency”:

1 Plasma

A plasma is a hot ionized gas which consists of approximately equal the number
of positively charged ions and negatively charged electrons. Its properties differ
significantly from neutral gases so that plasmas are considered a distinct “fourth
state of matter”.

A slight displacement of a group of electrons from their equilibrium position
creates regions of negative charge and regions of positive charge. Such a non-
uniform charge distribution sets up an electric field. Since the ions’ mass is much
larger than that of the electrons, this electric force accelerates mostly the electrons
in the direction opposite to the displacement, whereas the ions remain essentially
stationary. When the electrons arrive at the equilibrium position, they have gained
a kinetic energy equal to the potential energy of their initial displacement and
overshoot. This sets up an oscillation like a harmonic oscillator with the frequency

ωp,e =

√
e2ne

meε0

→ cold plasma equations → dispersion relation

2 Plasma oscillation: “the wakefield”

ref: Tajima, Dawson, pic: Sergey electrons
→ need to define ponderomotive force first

An electromagnetic wave (with sufficient intensity [value?]) propagating through
an under-dense plasma excites plasma waves: the ponderomotive force of the laser
pushes electrons in regions of lower light intensities, which means for a Gaussian
laser pulse that electrons are pushed out of the focus, leaving behind the heavier
and therefore inertial ions. After the laser pulse has passed, the space-charge forces
between the static ions and the electrons pull back the electrons, they overshoot
and the plasma oscillation starts. If the laser pulse is shorter that the plasma
frequency ωp,
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Laser propagation in plasmas I

1 Plasma

A plasma is a hot ionized gas which consists of approximately equal the number
of positively charged ions and negatively charged electrons. Its properties differ
significantly from neutral gases so that plasmas are considered a distinct “fourth
state of matter”.

1.1 plasma oscillation

A slight displacement of a group of electrons from their equilibrium position creates
regions of negative charge and regions of positive charge. Such a non-uniform
charge distribution sets up an electric field. Since the ions’ mass is much larger
than that of the electrons, this electric force accelerates mostly the electrons in
the direction opposite to the displacement, whereas the ions remain essentially
stationary. When the electrons arrive at the equilibrium position, they have gained
a kinetic energy equal to the potential energy of their initial displacement and
overshoot. This sets up an oscillation like a harmonic oscillator with the frequency

ωp,e =

√
e2ne

meε0
(1)

1.2 dispersion relation

[Goldston, Plasmaphysik]

Start from relevant Maxwell equation:

#∇× #E = −∂ #B

∂t
(2)

#∇× #B = µ0
#j +

1

c2

∂ #E

∂t
(3)

just consider plane waves:
#E = #E0e

i(!k!r−ωt)

#B = #B0e
i(!k!r−ωt)

make use of #∇× #E = i#k × #E:

i#k × #E = iω #B (4)

i#k × #B = µ0
#j + i

ω

c2
#E (5)

1
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1 Plasma

A plasma is a hot ionized gas which consists of approximately equal the number
of positively charged ions and negatively charged electrons. Its properties differ
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1
k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −n0e!ue and from first order
equations of motion, which can be derived with the help of the Lorentz force:
!F = q

(
!E + !v × !B

)

m
d!v

dt
= −e !E

the current dependence on the electric field can be calculated:

!j = −n0e!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
n0e2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

(*)

(**)

k x (*)  & use
k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −n0e!ue and from first order
equations of motion, which can be derived with the help of the Lorentz force:
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= −e !E

the current dependence on the electric field can be calculated:

!j = −n0e!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
n0e2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

-> find expression for 
current density j

(**)



Laser propagation in plasmas II

dependence of j on E:

k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2
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i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −n0e!ue and from first order
equations of motion, which can be derived with the help of the Lorentz force:
!F = q

(
!E + !v × !B

)

m
d!v

dt
= −e !E

the current dependence on the electric field can be calculated:

!j = −n0e!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
n0e2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

-> use Lorentz force:
-> to get first order


eqn. of motion

k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C
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Since the plasma frequency depends on the electron density, a critical density for
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For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

current due to movement of electrons 

(ions remain stationary for high frequencies)

-> current density: ne: electron density

k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −nee!ve and from first order
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dt
= −e !E
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e

m

1

iω
!E

using this in (6), gives:
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−x

r
ω2
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c

2

=>

1 Plasma

A plasma is a hot ionized gas which consists of approximately equal the number
of positively charged ions and negatively charged electrons. Its properties differ
significantly from neutral gases so that plasmas are considered a distinct “fourth
state of matter”.

1.1 plasma oscillation

A slight displacement of a group of electrons from their equilibrium position creates
regions of negative charge and regions of positive charge. Such a non-uniform
charge distribution sets up an electric field. Since the ions’ mass is much larger
than that of the electrons, this electric force accelerates mostly the electrons in
the direction opposite to the displacement, whereas the ions remain essentially
stationary. When the electrons arrive at the equilibrium position, they have gained
a kinetic energy equal to the potential energy of their initial displacement and
overshoot. This sets up an oscillation like a harmonic oscillator with the frequency

ωp,e =

√
e2ne

meε0
(1)

1.2 dispersion relation

[Goldston, Plasmaphysik]

Start from relevant Maxwell equation:

#∇× #E = −∂ #B

∂t
(2)

#∇× #B = µ0
#j +

1

c2

∂ #E

∂t
(3)

just consider plane waves:
#E = #E0e
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ω
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1

( )

remember:
k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −nee!ve and from first order
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!F = q

(
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)

m
d!v

dt
= −e !E

the current dependence on the electric field can be calculated:

!j = −nee!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
nee2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

for e-m 

waves: =>

The second-order equation of motion reads:

m
d!v (2)

dt
= −e

[
(δ!r (1) · !∇) !E|r=r0 + !v (1) × !B(1)

]
(3.6)

with equations (3.3), (3.4) and (3.5) and averaging over one oscillation period, this
becomes:

m

〈
d!v (2)

dt

〉
= − e2

mω2

1

2

[
( !E(!r) · !∇) !E(!r) + !E(!r)× (!∇× !E(!r))

]
(3.7)

Rewriting the second term by using the vector identity [???] cancels the (!E0 · !∇) !E0 and
the effective non-linear ponderomotive force reads:

!FNL = −1

4

e2

mω2
!∇E(r)2. (3.8)

3.1.1 Dispersion Relation

[Goldston, Plasmaphysik]

Start from relevant Maxwell equation:

!∇× !E = −∂ !B

∂t
(3.9)

!∇× !B = µ0
!j +

1

c2

∂ !E

∂t
(3.10)

just consider plane waves:
!E = !E0e

i(!k!r−ωt)

!B = !B0e
i(!k!r−ωt)

make use of !∇× !E = i!k × !E:

i!k × !E = iω !B (3.11)

i!k × !B = µ0
!j + i

ω

c2
!E (3.12)

k×eqn(3.11), use vector identity A× (B×C) = (A ·C)B− (A ·B)C and insert eqn(3.12)
into eqn(3.11)

k2 !E − !k · (!k · !E) =
ω2

c2

(
!j

iε0ω
+ !E

)
(3.13)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the current results
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just from the electron motion: !j = −nee!ve and from first order equations of motion,

which can be derived with the help of the Lorentz force: !F = q
(

!E + !v × !B
)

me
d!v

dt
= −e !E (3.14)

the current dependence on the electric field (for a plane wave) can be calculated as:

!j = −nee!v =
nee2

me

1

iω
!E

using this in (3.13), gives:

(c2k2 − ω2) !E = − nee2

meε0

!E (3.15)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the equation.

This gives the dispersion relation for electromagnetic waves propagating in a plasma:
(wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (3.16)

Fig. (??) shows the dispersion relation of an electromagnetic wave (red line) in plasma
in comparison to a wave in vacuum (black line). It can be seen that the wave in plasma
approaches the dispersion relation of the wave in vacuum for high frequencies. [[This is
the case because the response of the electrons is too slow to respond to the high frequency
of the light field]]. Light frequencies below the plasma frequency can’t propagate in the
plasma but are reflected or attenuated, because the plasma electrons shield fields, which
oscillate at a frequency below ωp. Since the plasma frequency depends on the electron
density, a critical density for ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Furthermore,
from eq.(3.16) can be seen that the wave number k is imaginary and a wave decays as

exp

(
−x

√
ω2

p − ω2

c

)

The skin depth

δ = |k|−1 =
c

(ω2
p − ω2)1/2

is defined as the distance over which the field is attenuated by a factor 1/e.
The non-relativisitic index of refraction can also be deduced from the dispersion relation
eq.(3.16):

η =
c

vph
=

√
1−

(ωp

ω

)2

where vph = ω/|!k| is the phase velocity of the light wave.
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p,e is recognizable on the on the right-hand side of the equation.

This gives the dispersion relation for electromagnetic waves propagating in a plasma:
(wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (3.16)

Fig. (??) shows the dispersion relation of an electromagnetic wave (red line) in plasma
in comparison to a wave in vacuum (black line). It can be seen that the wave in plasma
approaches the dispersion relation of the wave in vacuum for high frequencies. [[This is
the case because the response of the electrons is too slow to respond to the high frequency
of the light field]]. Light frequencies below the plasma frequency can’t propagate in the
plasma but are reflected or attenuated, because the plasma electrons shield fields, which
oscillate at a frequency below ωp. Since the plasma frequency depends on the electron
density, a critical density for ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Furthermore,
from eq.(3.16) can be seen that the wave number k is imaginary and a wave decays as

exp

(
−x

√
ω2

p − ω2

c

)

The skin depth

δ = |k|−1 =
c

(ω2
p − ω2)1/2

is defined as the distance over which the field is attenuated by a factor 1/e.
The non-relativisitic index of refraction can also be deduced from the dispersion relation
eq.(3.16):

η =
c

vph
=

√
1−

(ωp

ω

)2

where vph = ω/|!k| is the phase velocity of the light wave.
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k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −nee!ve and from first order
equations of motion, which can be derived with the help of the Lorentz force:
!F = q

(
!E + !v × !B

)

m
d!v

dt
= −e !E

the current dependence on the electric field can be calculated:

!j = −nee!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
nee2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

Laser propagation in plasmas III

-> phase velocity of wave: vφ =
ω

|"k|

-> refractive 
index of plasma:

Figure 1: Dispersion Relation for a electromagnetic wave in a plasma (red line)
and in a vacuum (black line)

The skin depth

δ = |k|−1 =
c

(ω2
p − ω2)1/2

is defined as the distance over which the field is attenuated by a factor 1/e.
The non-relativisitic index of refraction can also be deduced from the dispersion
relation eq.(8):

η =
c

vφ
=

√
1−

(ωp

ω

)2

where vφ = ω/|$k| is the phase velocity of the light wave.

3

-> group velocity of wave:
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using this in (3.13), gives:

(c2k2 − ω2) !E = − nee2

meε0

!E (3.15)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the equation.

This gives the dispersion relation for electromagnetic waves propagating in a plasma:
(wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (3.16)

Fig. (??) shows the dispersion relation of an electromagnetic wave (red line) in plasma
in comparison to a wave in vacuum (black line). It can be seen that the wave in plasma
approaches the dispersion relation of the wave in vacuum for high frequencies. [[This is
the case because the response of the electrons is too slow to respond to the high frequency
of the light field]]. Light frequencies below the plasma frequency can’t propagate in the
plasma but are reflected or attenuated, because the plasma electrons shield fields, which
oscillate at a frequency below ωp. Since the plasma frequency depends on the electron
density, a critical density for ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Furthermore,
from eq.(3.16) can be seen that the wave number k is imaginary and a wave decays as
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The skin depth

δ = |k|−1 =
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is defined as the distance over which the field is attenuated by a factor 1/e.
The non-relativisitic index of refraction can also be deduced from the dispersion relation
eq.(3.16):
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Dispersion relation I
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ck/ωp

ω
/ω

p
for ω >> ωp : 

-> dispersion relation:

k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −nee!ve and from first order
equations of motion, which can be derived with the help of the Lorentz force:
!F = q

(
!E + !v × !B

)

m
d!v

dt
= −e !E

the current dependence on the electric field can be calculated:

!j = −nee!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
nee2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

dispersion relation for

an e-m wave in plasma

dispersion relation for

an e-m wave in vacuum

disp. rel. of plasma 
approaches that of 
vacuum 
-> response of electrons 
(ωp) too slow to respond 
to high frequencies


-> light field doesn’t 
“feel” (couple to) 
electrons

for ω < ωp : 
wave can’t propagate in 
plasma

-> gets reflected or damped

-> plasma electrons shield fields that oscillate at a


 frequency < ωp

ω/
ω p



Dispersion relation II
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overcritical plasma
(ω = ωp)critical plasma density:

1 Plasma

A plasma is a hot ionized gas which consists of approximately equal the number
of positively charged ions and negatively charged electrons. Its properties differ
significantly from neutral gases so that plasmas are considered a distinct “fourth
state of matter”.

A slight displacement of a group of electrons from their equilibrium position
creates regions of negative charge and regions of positive charge. Such a non-
uniform charge distribution sets up an electric field. Since the ions’ mass is much
larger than that of the electrons, this electric force accelerates mostly the electrons
in the direction opposite to the displacement, whereas the ions remain essentially
stationary. When the electrons arrive at the equilibrium position, they have gained
a kinetic energy equal to the potential energy of their initial displacement and
overshoot. This sets up an oscillation like a harmonic oscillator with the frequency

ωp,e =

√
e2ne

meε0

→ cold plasma equations → dispersion relation

2 Plasma oscillation: “the wakefield”

ref: Tajima, Dawson, pic: Sergey electrons
→ need to define ponderomotive force first

An electromagnetic wave (with sufficient intensity [value?]) propagating through
an under-dense plasma excites plasma waves: the ponderomotive force of the laser
pushes electrons in regions of lower light intensities, which means for a Gaussian
laser pulse that electrons are pushed out of the focus, leaving behind the heavier
and therefore inertial ions. After the laser pulse has passed, the space-charge forces
between the static ions and the electrons pull back the electrons, they overshoot
and the plasma oscillation starts. If the laser pulse is shorter that the plasma
frequency ωp,

1

remember:

k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −nee!ve and from first order
equations of motion, which can be derived with the help of the Lorentz force:
!F = q

(
!E + !v × !B

)

m
d!v

dt
= −e !E

the current dependence on the electric field can be calculated:

!j = −nee!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
nee2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

critical plasma 
density:

for ω < ωp : 

k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −nee!ve and from first order
equations of motion, which can be derived with the help of the Lorentz force:
!F = q

(
!E + !v × !B

)

m
d!v

dt
= −e !E

the current dependence on the electric field can be calculated:

!j = −nee!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
nee2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

( )
-> k is imaginary

k =

√
ω2 − ω2

p

c
->

=> wave decays as:

with skin depth:

Figure 1: Dispersion Relation for a electromagnetic wave in a plasma (red line)
and in a vacuum (black line)

The skin depth

δ = |k|−1 =
c

(ω2
p − ω2)1/2

is defined as the distance over which the field is attenuated by a factor 1/e.
The non-relativisitic index of refraction can also be deduced from the dispersion
relation eq.(8):

η =
c

vφ
=

√
1−

(ωp

ω

)2

where vφ = ω/|$k| is the phase velocity of the light wave.

3

distance over which wave 
amplitude is decreased by 

factor 1/e

Figure 1: Dispersion Relation for a electromagnetic wave in a plasma (red line)
and in a vacuum (black line)

because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(9) can be seen that the wave number k is imaginary and a wave
decays as

exp

(
−x

√
ω2

p − ω2

c

)

The skin depth

δ = |k|−1 =
c

(ω2
p − ω2)1/2

is defined as the distance over which the field is attenuated by a factor 1/e.
The non-relativisitic index of refraction can also be deduced from the dispersion
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Laser-matter interaction I:  
the ponderomotive force

eqns of motion 

revisited:

for a wave with 

varying amplitude:

from Lorentz force:

3 Laser-matter interaction: the ponderomotive
force

[Jens]

The equations of motion for an electron under the influence of an electro-magnetically
wave with a spatially- and temporally-varying field amplitude !E0(!x, t) can be de-
rived from the Lorentz force as before (eq. (7)), but can’t be integrated as easily
as in the plane wave case. For the non-relativistic case, the !B-field dependence
can be neglected and the formula for the quiver velocity of the electron reads as:

!ve(!x, t) = − e

me

∫
!E0(!x, t) cos

(
!k!x− ωt + Φ

)
dt + !v0 (10)

where !v0 is the initial electron velocity, which will be set to !v0 = 0 for the sake of
simplicity.

5

k×eqn(4), use vector identity A× (B × C) = (A · C)B − (A · B)C

k2 !E − !k · (!k · !E) =
ω2

c2

(
i

!j

ε0ω
+ !E

)
(6)

for e-m waves !k ⊥ !E
also: for high frequencies, the ions stay stationary, which means that the cur-
rent results just from the electron motion: !j = −n0e!ue and from first order
equations of motion, which can be derived with the help of the Lorentz force:
!F = q

(
!E + !v × !B

)

m
d!v

dt
= −e !E

the current dependence on the electric field can be calculated:

!j = −n0e!v =
e

m

1

iω
!E

using this in (6), gives:

(c2 − ω2) !E =
n0e2

meε0

!E (7)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the

equation.
This gives the dispersion relation for electromagnetic waves propagating in a
plasma: (wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (8)

Fig. (1) shows the dispersion relation of an electromagnetic wave (red line) in
plasma in comparison to a wave in vacuum (black line). It can be seen that the
wave in plasma approaches the dispersion relation of the wave in vacuum for high
frequencies. [[This is the case because the response of the electrons is too slow
to respond to the high frequency of the light field]]. Light frequencies below the
plasma frequency can’t propagate in the plasma but are reflected or attenuated,
because the plasma electrons shield fields, which oscillate at a frequency below ωp.
Since the plasma frequency depends on the electron density, a critical density for
ω = ωp can be defined as:

nc =
meε0ω2

e2

For densities above nc incident light waves are reflected from the plasma. Further-
more, from eq.(8) can be seen that the wave number k is imaginary and a wave
decays as

e
−x

r
ω2

p−ω2

c

2

=>

initial electron

velocity == 0

-> quiver motion of electron

8 Stable, ultra-relativistic electron beams by laser-wakefield acceleration

! is the reduced Planck constant. The photon energies in the visible light spectrum can be
evaluated from relation (1.1.8) to range from 1.5 eV at λ = 800 nm to 3.1 eV at λ = 400 nm.
Modern laser technology allows for the storage of several joules of energy within a few tens
of femtoseconds and thus reaches peak powers P = ELτ

−1
L well beyond 100 TW. Hence, the

number of photons in such a light burst around 800 nm wavelength is on the order of 1019.
Moreover, each photon carries a quantized momentum #pph [Einstein 1909]:

#pph = !#k (1.1.9)

As a consequence, photons can be assigned a relativistic mass mph = #pphc−1 = Ephc−2, meaning
they obey gravity [Einstein 1905a, 1911, 1915]. This is true, although light quanta feature no
rest mass for they travel with c. Photon momentum has yet another important implication:
light momentum transfer results in radiation pressure PL = Ic−1. For high intensity laser beams
with I ≥ 1018 W cm−2, PL is substantial and exceeds 300 Mbar.

I.II Relativistic laser-matter-interaction

Very intense light pulses exhibit extreme electric fields (| #E0| ≥ 2 · 1012 V m−1), exert extreme
pressures (PL ≥ 300 Mbar) and carry extreme powers (P ≥ 100 TW) as shown in section I.I.
The interaction of such kind of radiation with matter therefore proceeds under extraordinary
conditions. The influence of these electro-magnetic waves on isolated electrons (section I.II.I)
as well as on single atoms and ions (section I.II.II) will be investigated in the following.

I.II.I Electron motion in an electro-magnetic field

The equation of motion for a free electron of charge e and mass me in an oscillating light field
of the form (1.1.4) albeit with temporally and spatially changing field envelopes #E0 (#x, t) and
#B0 (#x, t) can be compiled under consideration of the Lorentz force [Maxwell 1861]:

me
d

dt
(γ#v) = −e

(
#E + #v × #B

)
(1.2.1)

#v represents the electron velocity. The corresponding relativistic factors are γ = (1 − β2)−1/2

and β = |#v|c−1. For sub-relativistic speeds (#v $ c) the #v × #B component is negligible since
| #B| = | #E|c−1 (cf. section I.I). In this case γ ≈ 1 and (1.2.1) reduces to me

d!v
dt = −e #E from which

the electron quiver velocity can easily be found by integrating over time:

#v (#x, t) = − e
me

∫
#E0 (#x, t) · sin

(
ωt− #k#x+ φ

)
dt+ #v0 (1.2.2)

Here, the integration constant #v0 describes the initial electron velocity, which will be set to zero
for the sake of simplicity. The electron quiver energy is defined as Eq = 1

2me|#v|2. Averaging over
one oscillation period of Eq yields an expression for the ponderomotive potential UP. Generally,

-> averaging over one oscillation period of

 the quiver energy (               ) :

=> ponderomotive potential:

I.II Relativistic laser-matter-interaction 9

this can only be done in the slowly varying envelope approximation, meaning the envelope of the
electric field !E0 (!x, t) must change insignificantly on the time scale of an electric field oscillation
and therefore can be regarded as constant over one field cycle. That leads to:

UP = 〈Eq〉 = e2

4meω2 | !E0|2 ≈ 9.33 · 10−6 Iλ2 in eV (1.2.3)

The ponderomotive potential UP results in a force !FP = −!∇UP directed along the intensity
gradient of a laser-pulse envelope perpendicular to the laser propagation direction and hence
pushes electrons towards regions of lower energy flux density, e.g. for Gaussian shaped beams
out of focus. This statement and eq. (1.2.3) are valid for light pulses that are not strong enough
to accelerate electrons to relativistic speeds and which do not feature substantial intensity
modulations on the time scale of an electric field oscillation. A more rigorous derivation of the
ponderomotive force in the case of relativistic field amplitudes has been accomplished by Bauer
et al. [1995], Startsev and McKinstrie [1997], and Quesnel and Mora [1998]. However,
the resulting expressions are complex and do not considerably further the understanding of the
concept of ponderomotive pressure in this context. Hence they are not explicitly given here.
A convenient way to assess the relative strength of an electro-magnetic pulse and therefore to
determine the importance of relativistic effects in the interaction of a light wave with matter
is provided by the normalized vector potential (e.g. Gibbon [2005]):

a0 = e|
!A|
mec
≈ 8.5 · 10−6√Iλ (1.2.4)

a0 equals unity when the kinetic energy gain of an electron in half a light wave cycle is compara-
ble to its rest mass energy Erest = mec2. Thus a0 = 1 marks the transition from sub-relativistic
kinetics (a0 ' 1) to the relativistic regime (a0 ! 1). Todays ultra-intense laser systems readily
cross this threshold, which is reached at:

Irel = 2π2ε0m2
ec

5

e2λ2 ≈ 1.37 · 106 λ−2 in W cm−2

For such intensities the !v × !B term in (1.2.1) cannot be neglected anymore. It will result in an
additional electro-magnetic-force component pointing into the direction of laser propagation !k.
Unlike in the non-relativistic case this entails an electron ejection from high intensity regions
under an angle Θ against !k of decisively less than 90°. This Θ may be determined by comparing
the momentum components parallel p‖ and perpendicular p⊥ to !k of an electron initially at
rest, which is done by investigating its kinetic energy boost ∆Ekin after being expelled from
the interaction zone:

∆Ekin = Etot − Erest = (γ − 1)mec
2

with Etot = γmec2 identifying the total relativistic electron energy. The energy gain ∆Ekin

is extracted from the radiation field by photon momentum transfer of N light quanta (see

!E = !E0(!x, t) cos(!k!x− ωt + Φ)

2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

2.3.3. Laser-Matter Interaction
The Ponderomotive Force

The interaction of an electron with a plane, non-relativistic, electromagnetic wave
results in a harmonic oscillatory motion of the electron, since the restoring force of the
field is linear. In a tightly focused (and hence non-planar) ultrashort laser pulse however,
the light field varies temporally as well as radially. An electron that is placed in such
an inhomogeneous electromagnetic field experiences a nonlinear force which is called the
ponderomotive force:

~Fp = �1

4

e
2

me!
2

~r ~E
2 = �mec

2~r
✓

a
2

2

◆
. (2.4)

The ponderomotive force is directed such that charged particles are expelled from higher
towards lower intensity regions of the laser pulse which is indicated by the ~r ~E

2-term
in eq (2.4). For a derivation of the ponderomotive force, see the Appendix, section A.1.
The ponderomotive potential (~Fp = ~rUp) equals the average kinetic energy Ekin that
an electron gains within one oscillation period. In terms of a0, this can be written as

hEkini = Up =
a

2

0

2
mec

2
. (2.5)

It can be seen that for a0 &1, the particle quivering in the field of the laser pulse gains
energy comparable to its rest energy mec

2 and has to be treated relativistically.

2.3.4. Plasmas
Plasma frequency
Plasma wavelength

A plasma is an ionized gas of positively charged ions and free, negatively charged
electrons. A slight displacement of a group of electrons from their equilibrium posi-
tion creates regions of net negative charge and regions of net positive charge. Such a
non-uniform charge distribution produces an electric field which accelerates the elec-
trons in the direction opposite to their displacement. When the electrons arrive at the
equilibrium position, they have gained a kinetic energy equal to the potential energy of
their initial displacement and overshoot. Owing to their much larger mass compared to
electrons, the ions remain essentially stationary on these time-scales. This sets up an
oscillation similar to a harmonic oscillator with the plasma frequency

!p,e =

s
4⇡e2n0

h�ime
, (2.6)

where n0 is the electron density and me the electron rest mass and h�i the relativistic
factor averaged locally over many electrons. The plasma wavelength is defined as

�p =
2⇡c

!p
. (2.7)

6

-> for a0>1: electron gains energy 
comparable with rest mass
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this can only be done in the slowly varying envelope approximation, meaning the envelope of the
electric field !E0 (!x, t) must change insignificantly on the time scale of an electric field oscillation
and therefore can be regarded as constant over one field cycle. That leads to:

UP = 〈Eq〉 = e2

4meω2 | !E0|2 ≈ 9.33 · 10−6 Iλ2 in eV (1.2.3)

The ponderomotive potential UP results in a force !FP = −!∇UP directed along the intensity
gradient of a laser-pulse envelope perpendicular to the laser propagation direction and hence
pushes electrons towards regions of lower energy flux density, e.g. for Gaussian shaped beams
out of focus. This statement and eq. (1.2.3) are valid for light pulses that are not strong enough
to accelerate electrons to relativistic speeds and which do not feature substantial intensity
modulations on the time scale of an electric field oscillation. A more rigorous derivation of the
ponderomotive force in the case of relativistic field amplitudes has been accomplished by Bauer
et al. [1995], Startsev and McKinstrie [1997], and Quesnel and Mora [1998]. However,
the resulting expressions are complex and do not considerably further the understanding of the
concept of ponderomotive pressure in this context. Hence they are not explicitly given here.
A convenient way to assess the relative strength of an electro-magnetic pulse and therefore to
determine the importance of relativistic effects in the interaction of a light wave with matter
is provided by the normalized vector potential (e.g. Gibbon [2005]):

a0 = e|
!A|
mec
≈ 8.5 · 10−6√Iλ (1.2.4)

a0 equals unity when the kinetic energy gain of an electron in half a light wave cycle is compara-
ble to its rest mass energy Erest = mec2. Thus a0 = 1 marks the transition from sub-relativistic
kinetics (a0 ' 1) to the relativistic regime (a0 ! 1). Todays ultra-intense laser systems readily
cross this threshold, which is reached at:

Irel = 2π2ε0m2
ec

5

e2λ2 ≈ 1.37 · 106 λ−2 in W cm−2

For such intensities the !v × !B term in (1.2.1) cannot be neglected anymore. It will result in an
additional electro-magnetic-force component pointing into the direction of laser propagation !k.
Unlike in the non-relativistic case this entails an electron ejection from high intensity regions
under an angle Θ against !k of decisively less than 90°. This Θ may be determined by comparing
the momentum components parallel p‖ and perpendicular p⊥ to !k of an electron initially at
rest, which is done by investigating its kinetic energy boost ∆Ekin after being expelled from
the interaction zone:

∆Ekin = Etot − Erest = (γ − 1)mec
2

with Etot = γmec2 identifying the total relativistic electron energy. The energy gain ∆Ekin

is extracted from the radiation field by photon momentum transfer of N light quanta (see

Laser-matter interaction II:  
the ponderomotive force

ponderomotive potential:

ponderomotive force:
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Plasma Waves
laser excites a plasma wave

Dissertation M. F., after Dawson, Sci. American (1989) 

ultrashort laser pulse 
“kicks” electrons

electrons are pulled back 
by stationary ions

electrons oscillate with 
plasma frequency: 
 

collective motion forms a 
plasma wave that is 
propagating at laser group 
velocity
no charge transport: just 
oscillations

plasma electrons

2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

2.8. LWFA: List of Symbols

Symbol Description

a0 Amplitude of laser pulse intensity normalized to mec
2

�, ! Central wavelength, angular frequency of laser pulse
k = 2⇡/� Wavenumber of the laser pulse
⌘ Plasma index of refraction
vph, vg Phase/ group velocity of the laser pulse
�p, !p Plasma period / plasma frequency
�Np Non-linear plasma period
kp = 2⇡/�p Wavenumber of the plasma wave
n0 Unperturbed plasma (electron) density
�n = n� n0 Plasma density perturbation
⇠ = z � vpt Co-moving coordinate (distance from position of laser pulse)
� = e�/(mec

2) Normalized potential of plasma wave
Ez Longitudinal electric field of the plasma wave
E0 Nonrelativistic wavebreaking limit
Emax Maximum electric field amplitude of plasma wave
EWB Wavebreaking limit for nonlinear plasma wave
⇠min, ⇠max Position of wakefield potential minimum/maximum
Ld Dephasing length
Ldp Pump depletion length
R Radius of bubble

2.9. Back of the envelope formulas

• plasma frequency:

!p,0 =

s
e2n0

me✏0

= 5.7⇥ 104
p

n0 [cm�3]

• non-relativisitc plasma wavelength:

�p,0[µm] =
2⇡c

!p,0
= 3.33⇥ 1010

�
n0[cm

�3]
��1/2

• normalized vector potential of the laser field:

a0 ' �[µm] ·
r

I0[W/cm2]

1.4⇥ 1018
,

• laser power P = ⇡r
2

0
I0/2: (r0 is the laser spot size)

P [GW] ' 21.5⇥
⇣

a0r0

�

⌘2

40



Plasma Waves
charge separation in the 
plasma wave


set up longitudinal 
electrical field:  
laser-wakefield


particles injected into 
wakefield get accelerated! Dissertation M. F., after Dawson, Sci. American (1989) 

plasma electrons



Derivation of Plasma Wave 1
f ≃ meu0δ(t − x/vl)“Delta” force moving with vl : 

transfers momentum meu0 at laser front

Electrons at laser front oscillate with plasma frequency.  
Electron Velocity: 

ux = u0 cos(ωpτ) Θ(τ)

Θ(τ) = {0 for τ ≥ 0
1 for τ < 0

τ = t − x/vl



linearized fluid equations: assume background with a small 
perturbation δne = ne − n0 ne ≪ n0

continuity equation:


momentum equation: 


Poisson equation:

∂

∂t
δn + n0

#∇ · #u " 0

∂"u

∂t
! ∇φ−∇a2

0/2,

n: electron density

u: fluid velocity

a0: relativistic laser potential

    (~ laser intensity)

kp: plasma wavenumber

φ: electrostatic potential

“cold fluid” equations:

∂
∂t

ne ≃ − n0
∂
∂x

ux
∂
∂t

ux ≃
eEx

me

Plasma Response

∇2φ " k2
p
δn

n0

(a0 = 0) 



Ex ≃
meωpu0

e
sin(ωpτ) Θ(τ)

δne ≃ n0
u0

vl
cos(ωpτ) Θ(τ) δne = ne − n0

∂
∂t

ne ≃ − n0
∂
∂x

ux
∂
∂t

ux ≃
eEx

me

Θ(τ) = {0 for τ ≥ 0
1 for τ < 0

Derivation of Plasma Wave 2

ux = u0 cos(ωpτ) Θ(τ)

linearized fluid equations: Electron oscillation

Electron density:

(longitudinal) electric field: 

τ = t − x/vl



Matthias Fuchs

Plasma Wave Properties

graph: E. Esarey, IEEE Trans. 

Plasma Sci. 24, 252–288

Linear vs Nonlinear Wakefields

(a)

(b)

-> sinusoidal wave with period λp

δn/n0
Ez laser

pulse

=> E0 ≈ 100 GV/m !!

( RF: 20 MV/m) λp = 30 µm (100 fs)

{
-> typical density: n0 = 1018 cm-3 

electron density:

electric field

describe plasma electrons as fluid (use continuity-, momentum- and Poisson 
equation)


solution for ultrashort Gaussian laser pulse with frequency >> ωp


a02 ~ laser 
intensity


δn

n0
∼ a2

0

2
sin (kpξ)

Ez ∼
mec ωp

e

a2
0

2
cos (kpξ)

E0[V/m] ! 96
√

n0[cm−3]

{



Matthias Fuchs

Outline
• Electron interacting with a strong electro-

magnetic field 
• Introduction to plasma physics 
• Plasma waves 
• Laser-plasma acceleration 

• Discussion: Laser-wakefield acceleration 

• Maximum energy gain 

• Limits of laser-wakefield acceleration  



Wakefield
Linear Wakefield 
laser: a0 = 0.35 
-> sinusoidal density 
perturbation 
-> ~GV/m sinusoidal  
longitudinal el. field

electron 
density 

longitudinal 
electric field 

V. Malka, in Proc. of the 
CERN Accelerator School (2016) 

Nonlinear Wakefield 
laser: a0 ~ 2 
-> can only be solved numerically 
-> density spikes 
-> sawtooth el. field 
(~100 GV/m amplitude) 

thePBWA,theplasmawaveisdrivenataconstantbeat
frequency!"="1−"2!"p.Asthewavegrows,how-
ever,theeffectiveplasmafrequencydecreases,"p,eff

=2#c/$Np.Hence,thedriver"i.e.,thelaserbeatwave#
becomesoutofphasewiththenonlinearplasmawave.
Thisleadstosaturationoftheplasmawaveamplitudein
thePBWA"RosenbluthandLiu,1972;Tangetal.,1985#.
Alternatively,iftheplasmawaveistobedriventolarge
amplitudesbyaseriesofindividuallaserpulses,the
changeinthenonlinearplasmaperiodcanaffectthe
optimalspacingbetweenpulsesaswellastheoptimal
durationofthepulses"Umstadteretal.,1994#.

Inthe3Dnonlinearregime,numericalcalculations
areusuallyrequired.Onepossibleapproachistousea
fullnonlinearplasmafluidmodel"Shadwicketal.,2002#
oranonlinearquasistaticfluidmodel"Sprangleetal.,
1992;Esarey,Sprangleetal.1993#,whichisdiscussedin
Sec.V.Analternative"morecomputationallyexpensive#
approachforwakefieldcalculationistouseparticle
simulations"PukhovandMeyer-ter-Vehn,1996;Tzenget

al.,1996;MoreandAntonsen,1997;Renetal.,2000#.
Anexampleofanonlinearplasmawaveintwodimen-
sions,ascomputedusingafluidmodel"Shadwicketal.,
2002#,isshowninFig.2.Figure2showsthedensity
perturbationexcitedbyaGaussianlaserpulsewitha0

=1.5,k/kp=20,kpr0=8,andkpLrms=1,whereLrmsisthe
root-mean-square"rms#lengthofthelaserintensitypro-
file.Theshortwavelengthoscillationsobservedatthe
frontoftheplasmawaveareathalfthelaserwavelength
andresultfromthelinearpolarizationofthepulse.

Theincreaseintheplasmawavelengthwithincreasing
waveamplitudehasanadditionaleffectonnonlinear3D
plasmawaves.Consideraplasmawavethatisdriven
morestronglyonaxisthanoffaxis,e.g.,alaser-driven
accelerator,wherethelaserintensitypeaksonaxisand
typicallyhasaGaussianradialprofile.Onaxis,the
plasmawaveamplitudeismaximumand,inthenonlin-
earregime,theplasmawavelengthonaxisislargerthan
offaxis.Thustheplasmawavelengthvariesasafunction
ofradius$Np"r#.Thiscausesthewavefrontsofthe
plasmawavetobecomecurvedandtakeona“horse-
shoe”shape.Foraplasmawaveoffixedamplitude,the
fartherbackwithintheplasmawavetrain,themore

curvedtheplasmawavefront,i.e.,after!periods,the
phasefrontatlargeradiiislocatedat!$p,whereason
axis,thephasefrontislocatedat!$Np"r=0#.Thiseffect
hasbeenobservedintwo-dimensional"2D#nonlinear
quasistaticfluidsimulations"Sprangleetal.,1992;Krall
etal.,1993;Esarey,Sprangle,etal.,1993#,2Dparticle
simulations"Deckeretal.,1994;Bulanovetal.,1995,
1997#,and2Dfullfluidsimulations"e.g.,seeFig.2#.Cur-
vatureoftheplasmawavefrontscanleadtotransverse
wavebreaking,asdiscussedinSec.II.D.

D.Wavebreaking

Plasmasarecapableofsupportinglargeamplitude
electrostaticwaveswithphasevelocitiesnearthespeed
oflight.Inthelinearregime,theelectricfieldofa
plasmawaveinaplasma-basedacceleratorhastheform
Ez=Emaxsin$"p"z/vp−t#%,wherevp!cisthephaseve-
locity.ThepeakfieldamplitudeEmaxoftheplasmawave
canbeestimatedfromthePoissonequation!·E
=4#e"n0−ne#.Asimpleestimateforthemaximumfield
amplitudeisgivenbyassumingallplasmaelectronsare
oscillatingwithawavenumberkp="p/c.Thisgives
""p/c#Emax=4#en0orEmax=E0,whereE0=cme"p/eis
thecoldnonrelativisticwavebreakingfield"Dawdson,
1959#.

Itispossibleforthemaximumamplitudeofanonlin-
earplasmawavetoexceedthevalueE0.Usingthenon-
linear,relativistic,coldfluidequationsinonedimension,
themaximumamplitudeofaperiodicplasmawaveis
"AkhiezerandPolovin,1956;EsareyandPilloff,1995# EWB=&2"%p−1#1/2E0,

"26#
whichisreferredtoasthecoldrelativisticwavebreaking
field,where%p="1−vp

2/c2#−1/2istherelativisticLorentz
factorassociatedwiththephasevelocityoftheplasma
wave.Theplasmawavephasevelocityisapproximately
thegroupvelocityofthelaser,whichinthe1Dlow-
intensitylimitis%p!"/"p,where"isthefrequencyof
thelaser.Asanexample,consideranLPAwithaplasma
densityofn0!1017cm−3.Foralaserwavelengthof
1&m,%p!100andEWB!14E0.Notethatwhenthe
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Wake Properties
For linear wakes:


estimated accelerating field  
(cold non-relativistic wavebreaking limit)

2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

Figure 2.2. | Normalized nonrelativistic longitudinal and transverse wake-
fields. The normalized longitudinal (blue) and transverse (red) wakefield amplitude
in the nonrelativistic case is plotted versus the plasma wave phase ⇠. The value for
the transverse wakefield amplitude is taken o↵-axis (r > 0). For electrons, a negative
longitudinal field corresponds to an accelerating force, and a positive transverse field
corresponds to a radially focusing force (in direction �r, see eqs 2.17 & 2.18). The
shaded green area spans a �p/4-phase region of the wakefield which is both longitu-
dinally accelerating as well as transverse focusing.

The transverse focusing force can be calculated by the Panofsky-Wenzel theorem [Panof-
sky and Wenzel, 1956] (which relates the axial and the transverse electromagnetic forces
of a wakefield) and the transverse wakefield reads

Wr ⇠
4r

kpr
2
s

exp

✓
�2r2

r2
s

◆
sin [kp(z � ct)] . (2.18)

Both the longitudinal and the transverse fields can be seen in figure 2.2.

Properties of linear wakefields

Eqs.(2.17 & 2.18) already describe many properties unique to plasma accelerators:
The maximum electric field that a linear plasma wave will sustain can be estimated

by assuming that all plasma electrons oscillate with the plasma frequency !p. Solving
the linear Poisson’s equation (eq. (2.15)), assuming �n = n0 (i.e. a maximum density
modulation), results in the cold, non-relativistic wavebreaking amplitude

E0 =
mec !p

e
(2.19)

or in practical units
E0[V/m] ' 96

p
n0[cm�3] , (2.20)

10

for typical densities n0 = 1x1018 cm-3: E0 = 100 GV/m !! 
(= 10 V/Å; close to atomic unit electric field !!) 

size of accelerating structure: 
( ~plasma wavelength) 

2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

2.8. LWFA: List of Symbols

Symbol Description

a0 Amplitude of laser pulse intensity normalized to mec
2

�, ! Central wavelength, angular frequency of laser pulse
k = 2⇡/� Wavenumber of the laser pulse
⌘ Plasma index of refraction
vph, vg Phase/ group velocity of the laser pulse
�p, !p Plasma period / plasma frequency
�Np Non-linear plasma period
kp = 2⇡/�p Wavenumber of the plasma wave
n0 Unperturbed plasma (electron) density
�n = n� n0 Plasma density perturbation
⇠ = z � vpt Co-moving coordinate (distance from position of laser pulse)
� = e�/(mec

2) Normalized potential of plasma wave
Ez Longitudinal electric field of the plasma wave
E0 Nonrelativistic wavebreaking limit
Emax Maximum electric field amplitude of plasma wave
EWB Wavebreaking limit for nonlinear plasma wave
⇠min, ⇠max Position of wakefield potential minimum/maximum
Ld Dephasing length
Ldp Pump depletion length
R Radius of bubble

2.9. Back of the envelope formulas

• plasma frequency:

!p,0 =

s
e2n0

me✏0

= 5.7⇥ 104
p

n0 [cm�3]

• non-relativisitc plasma wavelength:

�p,0[µm] =
2⇡c

!p,0
= 3.33⇥ 1010

�
n0[cm

�3]
��1/2

• normalized vector potential of the laser field:

a0 ' �[µm] ·
r

I0[W/cm2]

1.4⇥ 1018
,

• laser power P = ⇡r
2

0
I0/2: (r0 is the laser spot size)

P [GW] ' 21.5⇥
⇣

a0r0

�

⌘2

40

for n0 = 1x1018 cm-3: λp = 30 µm !! 
(=> or 100 fs) 
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Figure 3 Strongly driven wake with curved wavefronts. a, Probe phase profile !φpr (r, ζ ) for an ∼30 TW pump, n̄max
e = 2.2×1018 cm−3 in the He2+ region. b, Simulated

density profile ne (r, ζ ) near the jet centre. c, Same data as in a, with the background n̄e subtracted to highlight the wake. d, Evolution of the reciprocal radius of wavefront
curvature behind the pump (data points), compared with calculated evolution (dashed lines) for indicated wake potential amplitudes. Each data point (except at ζ = 0)
averages over three adjacent periods. The horizontal error bars extend over the three periods averaged, and the vertical error bars extend over the range of fitted curvature
values averaged.

scattered pump light must be carefully excluded from the FD
holograms, a task we accomplish by using frequency-doubled
probe and reference pulses15. For n̄e <∼ 1019 cm−3, complete
frequency discrimination was achieved without difficulty. For
n̄e >∼ 1019 cm−3, the pump-generated supercontinuum extended
to 400 nm, introducing weak background fringes, whereas the
group-velocity walkoff between the 400 nm probe-reference pulses
and plasma structures, which propagate at a phase velocity equal
to the pump group velocity8, began to degrade the longitudinal
resolution. Although straightforward improvements to FDH (see
the Methods section) should overcome such difficulties, here we
report results for n̄e ≤ 6×1018 cm−3 where they do not arise.

Figure 2a,c shows reconstructed images of wakes produced
in a jet with a backing pressure of (a) 26 kPa (200 torr) or (c)
93 kPa (700 torr) by pump pulses of peak power ∼10 TW and
vacuum-focused intensity ∼1018 W cm−2. In both images, a sharp
ionization front is observed in the leading edge of the pump, and a
He2+ plateau and surrounding He+ corona in its wake. The latter
are identified by a sharp discontinuity in ne at their boundary
(|r| ≈ 35 µm), where pump intensity drops to the field ionization
threshold19 (∼1016 W cm−2) for He+. In the He2+ cores of Fig. 2,
either 5 (Fig. 2a) or 14 (Fig. 2c) periods of sinusoidal oscillations
of wavelength lp = 35 µm (Fig. 2a) or 13.5 µm (Fig. 2c), with
nearly flat wavefronts, are clearly observed. To help understand
this result, we simulated ionization and wake generation using
the particle-in-cell code WAKE20 in an axisymmetric geometry,
assuming a pump pulse with a gaussian radial and temporal
profile focused at the gas jet entrance, using the density profile
n̄e(z) measured by the transverse interferometer. Our simulations
indeed predict flat wavefronts for these laser–plasma parameters.

For example, Fig. 2b shows simulated ionization fronts and wake
generated by an 11 TW pulse near the jet centre, where He2+

density reaches its maximum value n̄max
e = 0.95 × 1018 cm−3, as

in Fig. 2a. Simulated and measured wake oscillation periods Twake

agree exactly. In addition, the radial extents of the He2+ core and
wake oscillations agree closely. The measured He+ sheath is wider
than the simulated one and varies from shot-to-shot, probably
because of fluctuating non-gaussian radial wings and scattering
of the pump pulse. As plasma oscillates at ωp behind the pump,
Twake = 2π/ωp is expected8. We observe Twake = 2π/ωmax

p , where
ωmax

p = (4πn̄max
e e2/γm)1/2, on every shot, as shown in Fig. 2d for

several dozen shots. The agreement is excellent, despite using no
fitting parameters, and suggests that the main features of !φpr(r,ζ)
are determined in the densest portion of the n̄e(z) profile.

Figure 3a shows the ionization front and wake produced
by an ∼30 TW laser pulse. This wake has curved wavefronts,
a clear signature of strongly driven, nonlinear laser–plasma
interaction21–24. The wavefronts evolve from flat profiles
immediately behind the pump to curved ‘horse-shoe’ profiles
after several periods. A simulated wake driven by a 35 TW pump
focused to 1/e2 intensity radius r0 = 25 µm, shown in Fig. 3b, best
reproduces the degree of curvature, its rate of change behind the
drive pulse, and the relative widths of wake and ionized He. To
highlight wavefront curvature, Fig. 3c shows the same wake as in
Fig. 3a after subtracting the phase shift from the index change due
to the background plasma. The data points plotted in Fig. 3d show
the evolution of the reciprocal wavefront radius ρ−1(ζ), obtained
by fitting the wavefronts within r < r0 to circular arcs. Such
curvature, though simulated with nonlinear fluid22 and particle21,23

codes, has never previously been observed in the laboratory.
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Figure 3 Strongly driven wake with curved wavefronts. a, Probe phase profile !φpr (r, ζ ) for an ∼30 TW pump, n̄max
e = 2.2×1018 cm−3 in the He2+ region. b, Simulated

density profile ne (r, ζ ) near the jet centre. c, Same data as in a, with the background n̄e subtracted to highlight the wake. d, Evolution of the reciprocal radius of wavefront
curvature behind the pump (data points), compared with calculated evolution (dashed lines) for indicated wake potential amplitudes. Each data point (except at ζ = 0)
averages over three adjacent periods. The horizontal error bars extend over the three periods averaged, and the vertical error bars extend over the range of fitted curvature
values averaged.

scattered pump light must be carefully excluded from the FD
holograms, a task we accomplish by using frequency-doubled
probe and reference pulses15. For n̄e <∼ 1019 cm−3, complete
frequency discrimination was achieved without difficulty. For
n̄e >∼ 1019 cm−3, the pump-generated supercontinuum extended
to 400 nm, introducing weak background fringes, whereas the
group-velocity walkoff between the 400 nm probe-reference pulses
and plasma structures, which propagate at a phase velocity equal
to the pump group velocity8, began to degrade the longitudinal
resolution. Although straightforward improvements to FDH (see
the Methods section) should overcome such difficulties, here we
report results for n̄e ≤ 6×1018 cm−3 where they do not arise.

Figure 2a,c shows reconstructed images of wakes produced
in a jet with a backing pressure of (a) 26 kPa (200 torr) or (c)
93 kPa (700 torr) by pump pulses of peak power ∼10 TW and
vacuum-focused intensity ∼1018 W cm−2. In both images, a sharp
ionization front is observed in the leading edge of the pump, and a
He2+ plateau and surrounding He+ corona in its wake. The latter
are identified by a sharp discontinuity in ne at their boundary
(|r| ≈ 35 µm), where pump intensity drops to the field ionization
threshold19 (∼1016 W cm−2) for He+. In the He2+ cores of Fig. 2,
either 5 (Fig. 2a) or 14 (Fig. 2c) periods of sinusoidal oscillations
of wavelength lp = 35 µm (Fig. 2a) or 13.5 µm (Fig. 2c), with
nearly flat wavefronts, are clearly observed. To help understand
this result, we simulated ionization and wake generation using
the particle-in-cell code WAKE20 in an axisymmetric geometry,
assuming a pump pulse with a gaussian radial and temporal
profile focused at the gas jet entrance, using the density profile
n̄e(z) measured by the transverse interferometer. Our simulations
indeed predict flat wavefronts for these laser–plasma parameters.

For example, Fig. 2b shows simulated ionization fronts and wake
generated by an 11 TW pulse near the jet centre, where He2+

density reaches its maximum value n̄max
e = 0.95 × 1018 cm−3, as

in Fig. 2a. Simulated and measured wake oscillation periods Twake

agree exactly. In addition, the radial extents of the He2+ core and
wake oscillations agree closely. The measured He+ sheath is wider
than the simulated one and varies from shot-to-shot, probably
because of fluctuating non-gaussian radial wings and scattering
of the pump pulse. As plasma oscillates at ωp behind the pump,
Twake = 2π/ωp is expected8. We observe Twake = 2π/ωmax

p , where
ωmax

p = (4πn̄max
e e2/γm)1/2, on every shot, as shown in Fig. 2d for

several dozen shots. The agreement is excellent, despite using no
fitting parameters, and suggests that the main features of !φpr(r,ζ)
are determined in the densest portion of the n̄e(z) profile.

Figure 3a shows the ionization front and wake produced
by an ∼30 TW laser pulse. This wake has curved wavefronts,
a clear signature of strongly driven, nonlinear laser–plasma
interaction21–24. The wavefronts evolve from flat profiles
immediately behind the pump to curved ‘horse-shoe’ profiles
after several periods. A simulated wake driven by a 35 TW pump
focused to 1/e2 intensity radius r0 = 25 µm, shown in Fig. 3b, best
reproduces the degree of curvature, its rate of change behind the
drive pulse, and the relative widths of wake and ionized He. To
highlight wavefront curvature, Fig. 3c shows the same wake as in
Fig. 3a after subtracting the phase shift from the index change due
to the background plasma. The data points plotted in Fig. 3d show
the evolution of the reciprocal wavefront radius ρ−1(ζ), obtained
by fitting the wavefronts within r < r0 to circular arcs. Such
curvature, though simulated with nonlinear fluid22 and particle21,23

codes, has never previously been observed in the laboratory.
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Figure 2 Small-amplitude wakes with flat wavefronts. a, Probe phase-shift profile !φpr (r, ζ ) produced by an ∼10 TW, 30 fs pump centred at zero on the horizontal
scale, electron density n̄max

e = 0.95×1018 cm−3 in the He2+ region. b, Simulated wake density profile ne (r, ζ ) near the jet centre produced by an 11 TW linearly polarized
pump. c, Same as in a, but n̄max

e = 5.9×1018 cm−3. d, Wake period versus n̄max
e , compared with theoretical curve.

frequency-domain holography (FDH)15, a technique designed to
image structures propagating near light speed c. FDH uses a long,
wide probe pulse that illuminates the entire object ne(r,ζ) at once,
like the ‘object’ beam of conventional holography. Here, r denotes
distance from the laser propagation axis. Interference of this probe
with an equally extended ‘reference’ pulse on a detector encodes the
object’s phase structure, which is subsequently ‘read’ to reconstruct
the object, completing the analogy with conventional holography.

In our experiments, wakefields were created by focusing a
∼1 J, 800 nm, 30 fs pulse from the University of Michigan’s
HERCULES laser system16 into a supersonic He gas jet (see Fig. 1).
Approximately 10% of the energy of each laser pulse was split
off for probe pulses. A fraction of the latter was configured
into a Mach–Zehnder interferometer (not shown) that probed
the pump-produced plasma transversely17, measuring its length
(L ∼ 2 mm), radius (∼50 µm) and time-averaged electron density
0.5 ≤ n̄e(z) ≤ 6 × 1018 cm−3 at each point 0 < z < L along
the propagation path, where z denotes distance from the gas
jet entrance. Wake structures the size of a plasma wavelength
15 ≤ lp ≤ 30 µm, however, were not resolved by transverse probing
because they propagate more than lp during the transit time of the
probe across the interaction region.

To resolve such structures, we constructed a longitudinal
probe line (see Fig. 1) that produced two co-propagating,
1 ps, linearly chirped second-harmonic pulses separated by
!τ = 3 ps (see the Methods section). The leading pulse (centre
wavelength lref = 400 nm) arrived at the jet before the pump,
and acted as a reference. The trailing pulse (hereafter ‘probe’,
wavelength lpr = 400 nm, frequency ωpr = 2πc/lpr) rode with the
pump, overlapping its co-propagating ionization front and wake
oscillations at plasma frequency ωp = (4πnee2/γm)1/2 (where

γ = (1 − v2/c2)1/2 is the relativistic Lorentz factor, and e, m
and v are the electron charge, rest mass, and oscillation velocity,
respectively), which imparted time/frequency-dependent phase
shifts to it. These shifts were recorded in frequency-domain (FD)
fringes of period14 2π/!τ formed via interference of the probe
and reference at the detection plane of an imaging spectrometer.
Transverse spatial variations were recorded by imaging the
interaction plane onto the spectrometer slit, which selected
a one-dimensional lineout. The complete two-dimensional FD
‘hologram’ (see Fig. 1, top) encoded longitudinal (that is, temporal)
phase variations along the wavelength axis and transverse spatial
variations along the orthogonal (slit) axis (measurement resolution
is discussed in the Methods section).

Fourier transformation of the FD hologram, analogous to
‘reading’ a conventional hologram with a single-frequency sine
wave, recovered probe temporal phase shift15,18 !φpr(r,ζ), which
a small computer reconstructed and displayed within ∼1 s.
!φpr(r, ζ) is related to the plasma refractive index η(r, ζ, z) =
[1−ω2

p(r,ζ,z)/ω2
pr]1/2 by

!φpr(r,ζ) = 2π

lpr

∫ L

0

[1−η(r,ζ,z)]dz, (1)

which simplifies to 2π[1 − η(r, ζ)]L/lpr for uniform n̄e(z)
and pump excitation. Approximating η ≈ 1 − ω2

p/2ω2
pr for our

tenuous plasma, measured !φpr(r, ζ) and wake density
profile ne(r, ζ, z) are related by !φpr(r, ζ) = (e2lpr/mc2)∫ L

0
[ne(r, ζ, z)/γ(r, ζ, z)]dz ≈ e2lprLne(r, ζ)/γ(r, ζ)mc2 for

non-uniform and uniform plasma, respectively. Single-shot FDH
reconstruction of ionization fronts generated by low-intensity
pump pulses was demonstrated previously15,18, but not wakes
generated by relativistic laser–plasma interaction. For the latter,
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Figure 2 Small-amplitude wakes with flat wavefronts. a, Probe phase-shift profile !φpr (r, ζ ) produced by an ∼10 TW, 30 fs pump centred at zero on the horizontal
scale, electron density n̄max

e = 0.95×1018 cm−3 in the He2+ region. b, Simulated wake density profile ne (r, ζ ) near the jet centre produced by an 11 TW linearly polarized
pump. c, Same as in a, but n̄max

e = 5.9×1018 cm−3. d, Wake period versus n̄max
e , compared with theoretical curve.

frequency-domain holography (FDH)15, a technique designed to
image structures propagating near light speed c. FDH uses a long,
wide probe pulse that illuminates the entire object ne(r,ζ) at once,
like the ‘object’ beam of conventional holography. Here, r denotes
distance from the laser propagation axis. Interference of this probe
with an equally extended ‘reference’ pulse on a detector encodes the
object’s phase structure, which is subsequently ‘read’ to reconstruct
the object, completing the analogy with conventional holography.

In our experiments, wakefields were created by focusing a
∼1 J, 800 nm, 30 fs pulse from the University of Michigan’s
HERCULES laser system16 into a supersonic He gas jet (see Fig. 1).
Approximately 10% of the energy of each laser pulse was split
off for probe pulses. A fraction of the latter was configured
into a Mach–Zehnder interferometer (not shown) that probed
the pump-produced plasma transversely17, measuring its length
(L ∼ 2 mm), radius (∼50 µm) and time-averaged electron density
0.5 ≤ n̄e(z) ≤ 6 × 1018 cm−3 at each point 0 < z < L along
the propagation path, where z denotes distance from the gas
jet entrance. Wake structures the size of a plasma wavelength
15 ≤ lp ≤ 30 µm, however, were not resolved by transverse probing
because they propagate more than lp during the transit time of the
probe across the interaction region.

To resolve such structures, we constructed a longitudinal
probe line (see Fig. 1) that produced two co-propagating,
1 ps, linearly chirped second-harmonic pulses separated by
!τ = 3 ps (see the Methods section). The leading pulse (centre
wavelength lref = 400 nm) arrived at the jet before the pump,
and acted as a reference. The trailing pulse (hereafter ‘probe’,
wavelength lpr = 400 nm, frequency ωpr = 2πc/lpr) rode with the
pump, overlapping its co-propagating ionization front and wake
oscillations at plasma frequency ωp = (4πnee2/γm)1/2 (where

γ = (1 − v2/c2)1/2 is the relativistic Lorentz factor, and e, m
and v are the electron charge, rest mass, and oscillation velocity,
respectively), which imparted time/frequency-dependent phase
shifts to it. These shifts were recorded in frequency-domain (FD)
fringes of period14 2π/!τ formed via interference of the probe
and reference at the detection plane of an imaging spectrometer.
Transverse spatial variations were recorded by imaging the
interaction plane onto the spectrometer slit, which selected
a one-dimensional lineout. The complete two-dimensional FD
‘hologram’ (see Fig. 1, top) encoded longitudinal (that is, temporal)
phase variations along the wavelength axis and transverse spatial
variations along the orthogonal (slit) axis (measurement resolution
is discussed in the Methods section).

Fourier transformation of the FD hologram, analogous to
‘reading’ a conventional hologram with a single-frequency sine
wave, recovered probe temporal phase shift15,18 !φpr(r,ζ), which
a small computer reconstructed and displayed within ∼1 s.
!φpr(r, ζ) is related to the plasma refractive index η(r, ζ, z) =
[1−ω2

p(r,ζ,z)/ω2
pr]1/2 by

!φpr(r,ζ) = 2π

lpr

∫ L

0

[1−η(r,ζ,z)]dz, (1)

which simplifies to 2π[1 − η(r, ζ)]L/lpr for uniform n̄e(z)
and pump excitation. Approximating η ≈ 1 − ω2

p/2ω2
pr for our

tenuous plasma, measured !φpr(r, ζ) and wake density
profile ne(r, ζ, z) are related by !φpr(r, ζ) = (e2lpr/mc2)∫ L

0
[ne(r, ζ, z)/γ(r, ζ, z)]dz ≈ e2lprLne(r, ζ)/γ(r, ζ)mc2 for

non-uniform and uniform plasma, respectively. Single-shot FDH
reconstruction of ionization fronts generated by low-intensity
pump pulses was demonstrated previously15,18, but not wakes
generated by relativistic laser–plasma interaction. For the latter,
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Electron Acceleration 2.6. Acceleration of Electrons in Laser Wakefields
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Figure 2.4. | Phase space picture of a nonlinear plasma wave. a) Potential of
the plasma wave (blue), driven by the laser pulse (red). The position of the potential
minium �min is labeled as ⇠min, the maximum �max as ⇠max. b) Phase space trajec-
tories of test electrons with di↵erent initial kinetic energies. The separatrix shown
as red dashed line separates trajectories of electrons that are trapped (white trajec-
tories) from those that are not trapped (black lines) by the fields of the wave. The
laser and plasma parameters are those of fig.(2.33).Trapping is not included in this
model and therefore electrons that are initially outside the separatrix will continue
to stay outside. As discussed below, trapping occurs if background electrons (with
a momentum p = 0) gain enough energy to get inside the separatrix (for example
by scattering or the field of a second laser beam) or if the separatrix is lowered (for
example by a drop of the plasma wave phase velocity).
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

The trapping and acceleration of electrons in a wakefield can be best explained in
the phase-space of the plasma wave. Fig.(2.4) shows the phase-space trajectories of
test electrons with di↵erent initial kinetic energies under the influence of the fields of a
plasma wave driven by a laser with the same parameters as in fig.(2.3). The motion of a
test electron is given by (see [Esarey and Pillo↵, 1995] and Appendix equation (A.49)):

H(pz, ⇠) =
p

p2
z + 1 + a2 � �ppz � �(⇠) (2.37)

The electron orbits are defined by H(pz, ⇠)=h0, where h0=const is the initial kinetic
energy of the test electron. Electrons with an initial velocity of at least the plasma wave
velocity (�z & �p) at the position of the potential minimum �min=�(⇠=⇠min) (backside
of the bucket) become trapped as discussed below and execute rotations in phase-space
(white-colored trajectories in fig.(2.4)). However, the trapping process itself is not de-
scribed in this model. Electrons with a velocity of exactly �p at ⇠min and an energy
of Hs(�s, �)=H(�p, �min) move on an orbit called the separatrix (dotted red trajectory
in Fig.(2.4)) which separates trapped from background electrons. Background electrons
(black trajectories in Fig.(2.4)) that do not have a su�ciently high velocity to become
trapped slip backward with respect to the plasma wave, whereas electrons with energies
that are too high cannot interact e�ciently with the wave and slowly overtake the wake.
The separatrix is characterized by its width (in the ⇠-dimension) which is the distance
between the position of two minima of the potential ⇠min and is given by the nonlinear
plasma wavelength �Np, equation (2.31). The height is given by the di↵erence between
the maximum and minimum electron momenta at the position of the potential peak
⇠max which can be calculated by solving equation (2.37) for H=Hs in a region behind
the laser, where a=0. This results in [Esarey et al., 2009]

pm = �p�p(1 + �p��)± �p

q
(1 + �p��)2 � 1 , (2.38)

where + and - stand for the maximum and the minimum momentum, �� = �max��min =
2�p[(1+Ê

2

max
/2)2�1]1/2 is the di↵erence between the maximum and minimum potential,

derived from equation (2.30). Typically, electrons get trapped at the back of a plasma
period (i.e. at ⇠ = ⇠min), where the plasma density is highest, as discussed below. They
get trapped at this position if they have a minimum momentum of [Schroeder et al.,
2006]

pt = �p�p(1� �p�min)� �p

q
(1� �p�min)2 � 1 , (2.39)

which indicates that the minimum initial momentum pt required for electrons to become
trapped by the plasma wave depends on the the plasma density n0 and the laser in-
tensity a0 (implicit through both the potential of the wave (eqs.(2.30)&(2.33)) and the
wave phase velocity �p, equation (2.35)). Thus, for higher laser intensities and higher
plasma densities (and therefore lower �p) electrons with a lower initial momentum be-
come trapped as can be seen in fig.(2.5). This can be understood since for higher plasma
densities the wave velocity is slower and for higher laser intensities the separatrix be-
comes larger both allowing electrons with smaller initial velocities to become trapped.
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

this approximation, the fluid response to a static laser field is calculated at a fixed time,
and in a next step the laser evolution due to this altered plasma fluid is determined by
solving the wave equation. Nonlinear plasma waves can be calculated starting from the
longitudinal parts of the cold relativistic fluid equations [Sprangle et al., 1990]:

the electron fluid momentum equation

d(��z)

dt
= c

@�

@z
� c

2�

@a
2

@z
, (2.21)

and the continuity equation

@n

@t
+ c

@(n�z)

@z
= 0, (2.22)

where � = e�/(mec
2) is the normalized electrostatic potential, n the plasma density

and a = a(z) the normalized laser pulse intensity. The normalized longitudinal and
transverse plasma fluid velocities are given by �z = vz/c and �? = v?/c, respectively.
The relativistic factor associated with the electrons is given by � = (1�(�2

z +�
2

?))�1/2 and
the plasma wave propagates with a phase velocity �p. The expressions can be greatly
simplified by a transformation into a frame that is co-moving with the plasma-wave
velocity. With a laser pulse as the driver, the wave moves with the group velocity of the
laser (�p ' �g) and therefore the co-moving frame has the coordinates ⇠ = z � vgt and
⌧ = t. The application of the QSA allows the fluid momentum and continuity equations
to be integrated (see Appendix, section A.1.3) which leads to:

�(1� �g�z)� � = 1 (2.23)

n(�g � �z) = n0�g (2.24)

These equations, in combination with the Poisson’s equation (eq. 2.15) lead to the qua-
sistatic cold fluid equation for the electrostatic potential �

@
2
�

@⇠2
= k

2

p�
2

g

"
�g

✓
1� 1 + a

2

�2
g(1 + �)2

◆�1/2

� 1

#
, (2.25)

where �g = (1� �
2

g)
�1/2.

In the case of �g � 1 (which means low plasma densities and high laser intensities,
see equation 2.35), this can be simplified to

@
2
�

@⇠2
=

k
2

p

2

✓
1 + a

2

(1 + �)2
� 1

◆
, (2.26)

and the plasma fluid quantities can be written as

n

n0

=
(1 + a

2) + (1 + �)2

2(1 + �)2
, (2.27)
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Wakefield Properties I

thePBWA,theplasmawaveisdrivenataconstantbeat
frequency!"="1−"2!"p.Asthewavegrows,how-
ever,theeffectiveplasmafrequencydecreases,"p,eff
=2#c/$Np.Hence,thedriver"i.e.,thelaserbeatwave#
becomesoutofphasewiththenonlinearplasmawave.
Thisleadstosaturationoftheplasmawaveamplitudein
thePBWA"RosenbluthandLiu,1972;Tangetal.,1985#.
Alternatively,iftheplasmawaveistobedriventolarge
amplitudesbyaseriesofindividuallaserpulses,the
changeinthenonlinearplasmaperiodcanaffectthe
optimalspacingbetweenpulsesaswellastheoptimal
durationofthepulses"Umstadteretal.,1994#.

Inthe3Dnonlinearregime,numericalcalculations
areusuallyrequired.Onepossibleapproachistousea
fullnonlinearplasmafluidmodel"Shadwicketal.,2002#
oranonlinearquasistaticfluidmodel"Sprangleetal.,
1992;Esarey,Sprangleetal.1993#,whichisdiscussedin
Sec.V.Analternative"morecomputationallyexpensive#
approachforwakefieldcalculationistouseparticle
simulations"PukhovandMeyer-ter-Vehn,1996;Tzenget
al.,1996;MoreandAntonsen,1997;Renetal.,2000#.
Anexampleofanonlinearplasmawaveintwodimen-
sions,ascomputedusingafluidmodel"Shadwicketal.,
2002#,isshowninFig.2.Figure2showsthedensity
perturbationexcitedbyaGaussianlaserpulsewitha0
=1.5,k/kp=20,kpr0=8,andkpLrms=1,whereLrmsisthe
root-mean-square"rms#lengthofthelaserintensitypro-
file.Theshortwavelengthoscillationsobservedatthe
frontoftheplasmawaveareathalfthelaserwavelength
andresultfromthelinearpolarizationofthepulse.

Theincreaseintheplasmawavelengthwithincreasing
waveamplitudehasanadditionaleffectonnonlinear3D
plasmawaves.Consideraplasmawavethatisdriven
morestronglyonaxisthanoffaxis,e.g.,alaser-driven
accelerator,wherethelaserintensitypeaksonaxisand
typicallyhasaGaussianradialprofile.Onaxis,the
plasmawaveamplitudeismaximumand,inthenonlin-
earregime,theplasmawavelengthonaxisislargerthan
offaxis.Thustheplasmawavelengthvariesasafunction
ofradius$Np"r#.Thiscausesthewavefrontsofthe
plasmawavetobecomecurvedandtakeona“horse-
shoe”shape.Foraplasmawaveoffixedamplitude,the
fartherbackwithintheplasmawavetrain,themore

curvedtheplasmawavefront,i.e.,after!periods,the
phasefrontatlargeradiiislocatedat!$p,whereason
axis,thephasefrontislocatedat!$Np"r=0#.Thiseffect
hasbeenobservedintwo-dimensional"2D#nonlinear
quasistaticfluidsimulations"Sprangleetal.,1992;Krall
etal.,1993;Esarey,Sprangle,etal.,1993#,2Dparticle
simulations"Deckeretal.,1994;Bulanovetal.,1995,
1997#,and2Dfullfluidsimulations"e.g.,seeFig.2#.Cur-
vatureoftheplasmawavefrontscanleadtotransverse
wavebreaking,asdiscussedinSec.II.D.

D.Wavebreaking

Plasmasarecapableofsupportinglargeamplitude
electrostaticwaveswithphasevelocitiesnearthespeed
oflight.Inthelinearregime,theelectricfieldofa
plasmawaveinaplasma-basedacceleratorhastheform
Ez=Emaxsin$"p"z/vp−t#%,wherevp!cisthephaseve-
locity.ThepeakfieldamplitudeEmaxoftheplasmawave
canbeestimatedfromthePoissonequation!·E
=4#e"n0−ne#.Asimpleestimateforthemaximumfield
amplitudeisgivenbyassumingallplasmaelectronsare
oscillatingwithawavenumberkp="p/c.Thisgives
""p/c#Emax=4#en0orEmax=E0,whereE0=cme"p/eis
thecoldnonrelativisticwavebreakingfield"Dawdson,
1959#.

Itispossibleforthemaximumamplitudeofanonlin-
earplasmawavetoexceedthevalueE0.Usingthenon-
linear,relativistic,coldfluidequationsinonedimension,
themaximumamplitudeofaperiodicplasmawaveis
"AkhiezerandPolovin,1956;EsareyandPilloff,1995#

EWB=&2"%p−1#1/2E0,"26#

whichisreferredtoasthecoldrelativisticwavebreaking
field,where%p="1−vp

2/c2#−1/2istherelativisticLorentz
factorassociatedwiththephasevelocityoftheplasma
wave.Theplasmawavephasevelocityisapproximately
thegroupvelocityofthelaser,whichinthe1Dlow-
intensitylimitis%p!"/"p,where"isthefrequencyof
thelaser.Asanexample,consideranLPAwithaplasma
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Wavebreaking
quick summary:


oscillating plasma electrons form plasma wave


plasma wave propagates ~with laser group velocity: 
typically: 𝛾p ≂ 10-100 (including 3D effects)


electron fluid velocity: 
-> depends on laser intensity 

�p = �laser,g ' !

!p

�e =
(1 + a2) + (1 + �)2

2(1 + �)

“self” injection through wavebreaking
-> at sufficiently high laser intensity, the electron fluid velocity is 
higher than plasma wave phase velocity 𝛾e > 𝛾p  => wave breaking

presented. At t! 1.388 s !Fig. 1"a#$ the wave is close to the
breaking point and the maximum velocity is 1.04 m/s which

is about 0.86C with C!1.21 m/s being the phase velocity
calculated from the linear theory. After a very short period of

time at t!1.562 s !Fig. 1"b#$, the maximum velocity in-

creases to 1.30 m/s "or 1.07C). Note that the error in velocity
measurements in the near-breaking case is 1.5 cm/s. One can

see that the details of the overturning jet are lost because of

the light scattering from the free surface. To capture the

overturning jet, the water was dyed with fluorescent dye. The

camera was aimed at an 8° angle from the normal to the

vertical test plane. The width of FOV was also reduced to 17

cm. Figure 2 shows the free surface profiles of the first

breaking wave in a 53 ms interval. The formation of the

overturning jet is evident. The profiles between the first three

breaking waves are quite similar with only a small phase

shift "not shown here#.
To measure the fluid particle velocities in the overturn-

ing jet, the width of the FOV was further reduced to 11 cm

and the camera was aimed at 45° from the normal to the

vertical plane. The time interval between two laser pulses

was 0.8 ms. Using a large camera angle avoids the blockage

of the light sheet by the water near the tank wall. Figure 3"a#
shows particle velocities on the upper surface of the over-

turning jet, which is at the same time frame as the one shown

in Fig. 2"b#. After correcting the effects of the camera angle,
the maximum velocity near the tip of the jet is 1.78 m/s or

1.47C . Fifty-five ms later at t! 1.610 s, the overturning jet

almost touches the front water surface !Fig. 3"b#$. The mea-
sured maximum velocity is 2.03 m/s "or 1.68C). Assuming
that in the neighborhood of the overturning jet consists of

same fluid particles between the time frames t! 1.555 s and

1.610 s, we estimate the acceleration components as ax
!0.36 m/s2 and az!"10.73 m/s2. Therefore, the magnitude
of the fluid particle acceleration is almost 1.1 times of the

gravitational acceleration, g , and the direction of the particle

acceleration is 88° downward from the horizontal direction.

To study the vertical vorticity generated by breaking

FIG. 1. Velocity field under a near-breaking wave at t! "a# 1.388 s and "b#
1.562 s. The FOV is 40#31 cm2 "21 cm%x%61 cm; "16 cm%z%15 cm#.

FIG. 2. Free surface profiles of the first breaking wave at t!"a# 1.502 s and
"b# 1.555 s. The camera view is 8° to the normal of the vertical plane with
FOV ! 17#13 cm2. The center of the image is at x!45 cm for "a# and x
!55 cm for "b#.

FIG. 3. Close-up of the velocity vectors along the overturning jet of a

breaking wave at "a# t!1.555 s and "b# t!1.610 s. The camera view is 45°
to the normal of the vertical plane with FOV!10.8#8.5 cm2. The center of
the image is at x!55 cm for "a# and x!65 cm for "b#.
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Electron Injection
2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS
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Figure 2.5. | Minimal injection momentum. The initial momentum required for
an electron to become trapped by a plasma wave for di↵erent laser intensities a0

plotted against the plasma density n0. The driver laser is assumed to have a central
wavelength of 800 nm.

Electrons that lie on the separatrix reach the highest momentum which in the linear
case can be written as [Esarey and Pillo↵, 1995]

�max ' 4�2

pÊmax (2.40)

The energy that the electron gains (pmax � pmin, eqn 2.38) is given by �max ' 2�2

pÊmax

[Tajima and Dawson, 1979].
For nonlinear waves, the maximum energy is given by [Esarey and Pillo↵, 1995]

�max ' 2�2

pÊ
2

max
, (2.41)

which implies that electrons can gain higher energies if they are trapped in nonlinear
plasma waves. Since �

2

p ⇠ n
�1

0
(eq 2.35), lower plasma densities allow for higher electron

energies even though for higher densities the accelerating field gradients are larger. This
can be understood by estimating the distance it takes for an electron moving with the
speed of light to outrun the accelerating (back half) part of the the plasma wave (moving
with �p and therefore slightly slower than c ). This distance is called the dephasing
length and in the linear case reads [Tajima and Dawson, 1979], [Esarey et al., 2009]

Ld = �
2

p�p '
�

3

p

�2
, (2.42)
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

The trapping and acceleration of electrons in a wakefield can be best explained in
the phase-space of the plasma wave. Fig.(2.4) shows the phase-space trajectories of
test electrons with di↵erent initial kinetic energies under the influence of the fields of a
plasma wave driven by a laser with the same parameters as in fig.(2.3). The motion of a
test electron is given by (see [Esarey and Pillo↵, 1995] and Appendix equation (A.49)):

H(pz, ⇠) =
p

p2
z + 1 + a2 � �ppz � �(⇠) (2.37)

The electron orbits are defined by H(pz, ⇠)=h0, where h0=const is the initial kinetic
energy of the test electron. Electrons with an initial velocity of at least the plasma wave
velocity (�z & �p) at the position of the potential minimum �min=�(⇠=⇠min) (backside
of the bucket) become trapped as discussed below and execute rotations in phase-space
(white-colored trajectories in fig.(2.4)). However, the trapping process itself is not de-
scribed in this model. Electrons with a velocity of exactly �p at ⇠min and an energy
of Hs(�s, �)=H(�p, �min) move on an orbit called the separatrix (dotted red trajectory
in Fig.(2.4)) which separates trapped from background electrons. Background electrons
(black trajectories in Fig.(2.4)) that do not have a su�ciently high velocity to become
trapped slip backward with respect to the plasma wave, whereas electrons with energies
that are too high cannot interact e�ciently with the wave and slowly overtake the wake.
The separatrix is characterized by its width (in the ⇠-dimension) which is the distance
between the position of two minima of the potential ⇠min and is given by the nonlinear
plasma wavelength �Np, equation (2.31). The height is given by the di↵erence between
the maximum and minimum electron momenta at the position of the potential peak
⇠max which can be calculated by solving equation (2.37) for H=Hs in a region behind
the laser, where a=0. This results in [Esarey et al., 2009]

pm = �p�p(1 + �p��)± �p

q
(1 + �p��)2 � 1 , (2.38)

where + and - stand for the maximum and the minimum momentum, �� = �max��min =
2�p[(1+Ê

2

max
/2)2�1]1/2 is the di↵erence between the maximum and minimum potential,

derived from equation (2.30). Typically, electrons get trapped at the back of a plasma
period (i.e. at ⇠ = ⇠min), where the plasma density is highest, as discussed below. They
get trapped at this position if they have a minimum momentum of [Schroeder et al.,
2006]

pt = �p�p(1� �p�min)� �p

q
(1� �p�min)2 � 1 , (2.39)

which indicates that the minimum initial momentum pt required for electrons to become
trapped by the plasma wave depends on the the plasma density n0 and the laser in-
tensity a0 (implicit through both the potential of the wave (eqs.(2.30)&(2.33)) and the
wave phase velocity �p, equation (2.35)). Thus, for higher laser intensities and higher
plasma densities (and therefore lower �p) electrons with a lower initial momentum be-
come trapped as can be seen in fig.(2.5). This can be understood since for higher plasma
densities the wave velocity is slower and for higher laser intensities the separatrix be-
comes larger both allowing electrons with smaller initial velocities to become trapped.
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Electron Trapping
electrons get trapped (cross into 
separatrix) at the back of the bucket  
(at the potential minimum)

minimum momentum required for 
trapping

Dissertation M.F.

implicitly depends on laser intensity a0 
and plasma density n0

lower momentum required for higher laser intensities 
and higher plasma densities

bigger separatrix amplitude

slower wake velocity



Electron velocity too small for trapping 

Untrapped electron



Electron velocity sufficiently high

Trapped & accelerated electron
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Accelerator Length, Maximum Energy
Linear vs Nonlinear Wakefields

(a)

(b)

δn/n0

Ezω2 = ω2
p + c2k2

vg =
dω

dk
=

√
1−

(ωp

ω

)2
· c

dispersion relation :

   (for laser in plasma)

plasma wave moves 
w laser group velocity: 
slightly slower than c 

dephasing length Ld:

 distance until electrons (moving with c)

 outrun accelerating phase

decelerating 
phase

accelerating 
phase



Accelerator Length, Maximum Energy
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λ3
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λ2
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0dephasing length Ld:

 distance until electrons (moving with c)

 outrun accelerating phase
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

Figure 2.2. | Normalized nonrelativistic longitudinal and transverse wake-
fields. The normalized longitudinal (blue) and transverse (red) wakefield amplitude
in the nonrelativistic case is plotted versus the plasma wave phase ⇠. The value for
the transverse wakefield amplitude is taken o↵-axis (r > 0). For electrons, a negative
longitudinal field corresponds to an accelerating force, and a positive transverse field
corresponds to a radially focusing force (in direction �r, see eqs 2.17 & 2.18). The
shaded green area spans a �p/4-phase region of the wakefield which is both longitu-
dinally accelerating as well as transverse focusing.

The transverse focusing force can be calculated by the Panofsky-Wenzel theorem [Panof-
sky and Wenzel, 1956] (which relates the axial and the transverse electromagnetic forces
of a wakefield) and the transverse wakefield reads

Wr ⇠
4r

kpr
2
s

exp

✓
�2r2

r2
s

◆
sin [kp(z � ct)] . (2.18)

Both the longitudinal and the transverse fields can be seen in figure 2.2.

Properties of linear wakefields

Eqs.(2.17 & 2.18) already describe many properties unique to plasma accelerators:
The maximum electric field that a linear plasma wave will sustain can be estimated

by assuming that all plasma electrons oscillate with the plasma frequency !p. Solving
the linear Poisson’s equation (eq. (2.15)), assuming �n = n0 (i.e. a maximum density
modulation), results in the cold, non-relativistic wavebreaking amplitude

E0 =
mec !p

e
(2.19)

or in practical units
E0[V/m] ' 96

p
n0[cm�3] , (2.20)

10

max electron energy:

assume const. E0
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Figure 2.2. | Normalized nonrelativistic longitudinal and transverse wake-
fields. The normalized longitudinal (blue) and transverse (red) wakefield amplitude
in the nonrelativistic case is plotted versus the plasma wave phase ⇠. The value for
the transverse wakefield amplitude is taken o↵-axis (r > 0). For electrons, a negative
longitudinal field corresponds to an accelerating force, and a positive transverse field
corresponds to a radially focusing force (in direction �r, see eqs 2.17 & 2.18). The
shaded green area spans a �p/4-phase region of the wakefield which is both longitu-
dinally accelerating as well as transverse focusing.

The transverse focusing force can be calculated by the Panofsky-Wenzel theorem [Panof-
sky and Wenzel, 1956] (which relates the axial and the transverse electromagnetic forces
of a wakefield) and the transverse wakefield reads

Wr ⇠
4r

kpr
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exp
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r2
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◆
sin [kp(z � ct)] . (2.18)

Both the longitudinal and the transverse fields can be seen in figure 2.2.

Properties of linear wakefields

Eqs.(2.17 & 2.18) already describe many properties unique to plasma accelerators:
The maximum electric field that a linear plasma wave will sustain can be estimated

by assuming that all plasma electrons oscillate with the plasma frequency !p. Solving
the linear Poisson’s equation (eq. (2.15)), assuming �n = n0 (i.e. a maximum density
modulation), results in the cold, non-relativistic wavebreaking amplitude

E0 =
mec !p

e
(2.19)

or in practical units
E0[V/m] ' 96

p
n0[cm�3] , (2.20)
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

2.8. LWFA: List of Symbols

Symbol Description

a0 Amplitude of laser pulse intensity normalized to mec
2

�, ! Central wavelength, angular frequency of laser pulse
k = 2⇡/� Wavenumber of the laser pulse
⌘ Plasma index of refraction
vph, vg Phase/ group velocity of the laser pulse
�p, !p Plasma period / plasma frequency
�Np Non-linear plasma period
kp = 2⇡/�p Wavenumber of the plasma wave
n0 Unperturbed plasma (electron) density
�n = n� n0 Plasma density perturbation
⇠ = z � vpt Co-moving coordinate (distance from position of laser pulse)
� = e�/(mec

2) Normalized potential of plasma wave
Ez Longitudinal electric field of the plasma wave
E0 Nonrelativistic wavebreaking limit
Emax Maximum electric field amplitude of plasma wave
EWB Wavebreaking limit for nonlinear plasma wave
⇠min, ⇠max Position of wakefield potential minimum/maximum
Ld Dephasing length
Ldp Pump depletion length
R Radius of bubble

2.9. Back of the envelope formulas

• plasma frequency:

!p,0 =

s
e2n0

me✏0

= 5.7⇥ 104
p

n0 [cm�3]

• non-relativisitc plasma wavelength:

�p,0[µm] =
2⇡c

!p,0
= 3.33⇥ 1010

�
n0[cm

�3]
��1/2

• normalized vector potential of the laser field:

a0 ' �[µm] ·
r

I0[W/cm2]

1.4⇥ 1018
,

• laser power P = ⇡r
2

0
I0/2: (r0 is the laser spot size)

P [GW] ' 21.5⇥
⇣

a0r0

�

⌘2

40

For L = 20 cm:

Wmax = 52 GV/m *0.2m = 10.4 GeV

Experimental results:



Matthias Fuchs

Other Acceleration Limits: Laser DiffractionLimits to Acceleration

• Laser pulse diffraction

Rayleigh diffraction length: ZR = πr2
0/λ

Effective accel. length: LR = πZR = π2r2
0/λ

Ex.: r0 = λp/π ⇒ LR = γpλp

• Dephasing length: Ld = γ2
pλp

• Pump depletion length: Lp = γ2
pλp/a2

0

• Typically: LR " Ld
<
∼ Lp

• Single-stage energy gain (a2 " 1)

W = eEzLaccel

Diffraction: WR[MeV] $ 580(λ/λp)P [TW]

Dephasing: Wd[GeV] $ I[W/cm2]/n[cm−3]

• Example:

λ = 0.8 µm, λp = 30 µm (n = 1018 cm−3),
a0 = 0.7 (I = 1018 W/cm2), r0 = 10 µm, P = 2.4 TW

LR = 1.2 mm, Ld = 4.2 cm, Lp = 8.6 cm

WR = 37 MeV, Wd = 1 GeV

for 25 µm focus: Zr = 0.5 mm

Guiding
plasma index of refraction:

η = 1−
ω p

ωlas

"

#
$

%

&
'

2

= 1− 4πe
2ne

me

phase velocity:

vph =
c
η
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How to guide a laser?

η = 1−
ω p

ωlas

"

#
$

%

&
'

2

= 1− 4πe
2ne

me

guiding using 
density 
gradient:

“Plasma fiber”

relativistic self focussing 
-> self guiding

Self-focussing: vph= c/nR

γe

increase in electron mass on 
axis (at high intensities)

Laser & Plasma Accelerators Workshop, Kardamili 22-26 June 2009Simon Hooker, University of Oxford

Gradient refractive index guiding

A propagating beam will be 

focused if the refractive index 

decreases with distance from  

axis.
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Gradient refractive index guiding

A propagating beam will be 

focused if the refractive index 
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transverse variation of intensity 

yields refractive index profile
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transverse variation of density yields 

refractive index profile
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Plasma channel

! ne(0) = 3!1017 cm-3

! ne(r0) = 1!1018 cm-3

Probe beam

! in:  F/30,  !52 micron

! out:  !46 micron
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Fig. 7. (Color) Line-out of the plasma density obtained from the interfero-
gram of Fig. 6 (approximately in the middle of the visible cell). The density on
axis is 3.1 × 1017 cm−3, the maximum plasma density on the channel walls
is 1.05 × 1018 cm−3, and the channel radius is 405 µm.

for interferogram readability. It was obtained by using the same
high-voltage pulse as in Fig. 5 but with a delay of 75 ns.
We are not able to measure the pressure but, because for
these discharge parameters, the hydrogen ionization is close to
complete, we can estimate it to be ∼20 mbar using the inter-
ferometry results. The assumption of close to full ionization
is based on previous work where full ionized plasmas were
created by similar discharges with the same hydrogen or helium
pressures and with lower electric fields and currents [14], [18].
The plasma density is obtained using the same procedure as in
[14]. First, the interferogram phase is obtained by manipulation
of a clean part of the interferogram image in the frequency
domain [19]. Then, the refractive index, or the plasma density,
can be retrieved by Abel inversion. There are two sensitive
aspects on this procedure. First, the phase is obtained using
filtering and translation in the frequency domain. Filtering cuts
out unwanted unphysical density oscillations but may also cut
detail (particularly important for plasmas with strong gradients
like the present ones). In our case, we try different filter sizes
to make sure we are removing the oscillations due to the inter-
ference, keeping the plasma density detail as much as possible
(normally an error of less than 10% is achieved). The second
sensitive aspect is that Abel inversion works for symmetric
objects and requires an integration from the axis of the plasma
to some distance where the plasma density is negligible. Here,
we use the vertical phase “center of mass” as the plasma axis
position, and we average both sides of the plasma in order to
simplify the procedure. Nevertheless, the averaging does not
introduce significant changes because the plasma asymmetry is
normally negligible.

In Fig. 7, we present a line-out of the plasma density obtained
from the interferogram of Fig. 6. A clear close to parabolic
shape with a minimum density on axis is obtained. The axial
plasma density is 3.1 × 1017 cm−3, whereas the maximum
density on the plasma channel wall is slightly higher than the
1.05 × 1018 cm−3 shown on the graphic because it is affected
by the frequency space filtering. The diameter of the plasma

Fig. 8. (Color) Images of the transmitted laser beam at device exit (cathode
aperture) with (a) no plasma and (b) a plasma channel produced by a discharge
with a 65-ns delay. A circle on the aperture position was drawn on its position.
The exit spot diameter on (b) is ∼46 µm.

channel (measured between density peaks) is 810 µm. The
matched guiding spot radius of this channel [20] is therefore
∼65 µm.

A plasma channel with this density and diameter can be used
with a large laser system to produce energy gains on the order of
10 GeV if the channel length is extended to ∼10 cm. However,
an improvement on the interferometry diagnostic should make
possible the measure of plasmas of smaller diameter using the
same device.

The device can produce straight, uniform, and close to
symmetric plasmas that evolve to guiding plasma channels in
a reproducible way for low gas cell pressures (20–40 mbar).
When we increase the pressure above this region, the plasmas
become less symmetric and reproducible.

VI. LASER GUIDING MEASUREMENTS

In Fig. 8, we present two images of the laser beam transmit-
ted through the guiding device with no plasma (a) and with a
plasma channel (b) produced with a delay of 65 ns after the
discharge current start. The images are taken in the cathode
electrode aperture (the channel exit). The main probe laser
beam is focused in the capillary entrance with a focal spot
diameter of 52 µm.

The plasma channel used to obtain the image of the guiding
beam in Fig. 8(b) was produced with approximately the same
gas cell pressure as the channel previously analyzed by inter-
ferometry (close to 20 mbar). However, the delay of the laser
beam with respect to the discharge is 65 ns. This is 10 ns earlier
in plasma expansion than in the interferometry shot where the
delay was 75 ns.

The spot size at the channel exit in Fig. 8(b) is ∼46 µm. This
is a typical result in a guiding window of about 5 ns where we
get very good reproducibility (∼90%) laser guiding with spot
sizes around 50 µm.

Outside the window, we can see no guiding for longer delays
and a progressively weaker guiding effect ∼20 ns before the
guiding window. With the present setup, it is not possible to
measure the guiding efficiency of the plasma channel. However,
an estimate based on the integration of the image intensity
for different shots (to reduce the effect of shot to shot energy
fluctuations) places this efficiency very close to one on the
guiding window.
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of the wake can therefore be expressed as !" ’ !g ! !etch,
where !g is the linear group velocity of light in a very
underdense plasma !2

p " !2
0; therefore !" ’ c#1!

3!2
p=$2!2

0%&. The fact that the phase velocity of a wake
excited by an intense laser was less than even the linear
group velocity of a laser was first discussed in [31]. The
distance that the trapped electrons travel until they outrun
the wave (dephasing length) is

 Ld ’
c

c! !"
R ’ 2

3

!2
0

!2
p
R: (4)

We find in numerous 1D, 2D, and 3D simulations that
the etching velocity and hence this dephasing estimate
works well for 2 & a0 & 2

!!!!
nc
n0

q
. The estimate for the upper

value of a0 is discussed later.
To illustrate the process of local pump depletion and its

relationship to photon deceleration [27], we plot the wave
number, kz$z%, of one component of the laser’s electric field
$Ex% after it has propagated through 0.18 cm of plasma for
three different laser intensities, a0 ' 1; 4; 10 in Fig. 2. For
the corresponding simulations in Figs. 2(a) and 2(b), a0 '
4 but the pulse length was 30 and 50 fs, respectively. For

 

FIG. 1. (Color) A sequence of 2-dimensional slices $x! z% reveals the evolution of the accelerating structure (electron density, blue)
and the laser pulse (orange). Each plot is a rectangular of size z ' 101:7 #m (longitudinal direction, z) and x ' 129:3 #m (transverse
direction, x). A broken white circle is superimposed on each plot to show the shape of the blown-out region. When the front of the laser
has propagated a distance (a) z ' 0:3 mm, the matched laser pulse has clearly excited a wakefield. Apart from some local modification
due to beam loading effects, as seen in (b) this wakefield remains robust even as the laser beam propagates though the plasma a
distance of 7.5 mm [as seen in (c) and (d)] or 5 Rayleigh lengths. After the laser beam has propagated 2 mm [as seen in (b)] into the
plasma, one can clearly see self-trapped electrons in the first accelerating bucket. The radial and longitudinal localization of the self-
trapped bunch is evident in part (c). After 7.5 mm the acceleration process terminates as the depleted laser pulse starts diffracting.
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The Bubble
Assume spherical cavity: fields can be derived 
using Gauss’ Law


Accelerating field: 
(linear with distance) 
- same field strength across  
different transv. positions 
- max field at ξ=R:


Transverse (restoring) 
field 

where ⇠ measures the distance to the centre of the bubble which moves nearly at the laser group velocity.
The field accelerates electrons for ⇠ < 0 and decelerates them for ⇠ > 0. The linear focusing and
accelerating fields are well reproduced in simulations of the laser wakefield accelerator, as shown in
Fig. 4.
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Fig. 4: Three-dimensional (3D) Osiris simulation showing focusing (a) and accelerating fields (b) for a laser
wakefield accelerator in the blowout regime. The plasma density is shown in grey colours and fields in blue-red
colours. The red dashed lines shown a transverse lineout of the focusing (a) and accelerating (b) fields. Focusing
fields are linear within the entire blowout region. Accelerating fields are close to linear except at the back of the
bubble.

Equation (41) is valid as long as the witness beam wakefields are negligible. In this case, Eq. (41)
shows that the acceleration depends on the initial ⇠ position of each beam electron. This can increase
the final energy spread of the bunch. As with the 1D case, however, it is possible to compensate for this
effect by tailoring the shape of the witness bunch current profile in order to preserve the initial energy
spread of the witness bunch.

In order to find the average accelerating field in the bubble, which when multiplied by the total
acceleration distance determines the final energy energy gain, Eq. (41) needs to be supplemented with an
additional expression defining the radius of the bubble. The radius of the bubble, rb, can be retrieved by
equating the laser ponderomotive (repulsive) force to the ion channel (attractive) force:

Fp ' Er ,
a0

w0
= Er ' rb ! rb = ↵

p
a0, (42)

where ↵ = 2 has been determined through PIC simulations [21, 25] and where we have assumed that
w0 ' rb. Combining Eq. (41) with Eq. (42) yields an estimate for the average accelerating field given
by

hEacceli '
p
a0

2
. (43)

The maximum acceleration distance corresponds to the smallest distance between pump depletion
or dephasing. The pump depletion length, Lpd, is the length it takes for the laser to exhaust its energy
to the plasma through wakefield excitation. For propagation distances larger than Lpd, the amplitudes of
the plasma waves are negligible. Thus, we can assume that the acceleration stops at Lpd. The dephasing
length, Ld, is the length it takes for a particle to outrun the accelerating phase of the wave, i.e. to go from
regions with ⇠ < 0, where Eaccel < 0, to regions with ⇠ = 0 where Eaccel = 0.

Pump depletion in the blowout regime is determined by the rate at which the laser leading edge
gives its energy to the plasma. This localized pump depletion process is also called etching. Since
the back propagates mostly in vacuum, it does not give energy to the plasma. As the laser propagates,
the front of the laser is then locally pump depleted. The pump depletion length is then given by the
product between the laser duration and the velocity at which the laser leading edge etches back, given by
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

possibility to produce high-quality, ultrarelativistic electron bunches with small energy-
spreads and low emittances [Pukhov and Meyer-ter Vehn, 2002]. The bubble provides
fields that have ideal focusing and acceleration properties for electrons: at a certain
longitudinal position, the accelerating field is constant with the transverse distance from
the axis (r?) and varies linearly with the distance to the laser pulse ⇠, whereas the
transverse fields are linear with the the radius r? and constant along ⇠. Therefore, the
bubble produces fields that are suited for an emittance-preserving acceleration even for
a transverse finite-sized electron beam. These properties are due to the spherical shape
of the bubble which is filled with a uniform ion background. The fields are given by
[Kostyukov et al., 2004; Lu et al., 2006]

Ez(⇠) '
⇠

2
kpE0 (2.57)

Er(r?)�B⇥(r?) =
r?

2
kpE0 (2.58)

where E0 is the non-relativistic wavebreaking limit (eq 2.19). The maximum axial electric
field is at the bubble radius ⇠ = R and for a matched laser spot size (eq 2.60) has the
amplitude of Emax/E0 =

p
a0.

Typical pulse lengths and intensities of laser systems used in LWFA experiments
initially do not reach the threshold to operate in the bubble regime. However, during
the pulse propagation in the plasma, the laser undergoes nonlinear evolution, such as
self-steepening, self-shortening and self-focussing (see section 2.6.4) This results in a
significantly higher laser intensity which can lead to a wake in the “bubble-like” regime
with its typical ponderomotive blowout of electrons from the axis. The e↵ect can be
seen in PIC simulations that are explaining recent experimental results (see figure 2.8
and [Faure et al., 2004]).

Self-Injection into the Bubble Fields

Electrons can become self-injected directly into the accelerating phase of the bubble
fields. In order to describe the injection process, electrons originating from di↵erent
distances to the laser propagation axis have to be distinguished. Electrons, initially lo-
cated o↵-axis, are mostly hit by the outer regions of the laser and get scattered outwards,
never to return to the axis which means that they do not contribute to the acceleration
process and their energy is lost. Most electrons that are transversely expelled by the
laser from a region close to the axis wrap around the cavity in half circles. They compose
a highly dense electron sheath of radius R around the bubble center ⇠ = 0 (see fig.2.7),
that forms the boundary of the bubble. On the backside of the bubble, the trajectories
of these electrons cross, leading to a strongly peaked electron density. For a su�ciently
high laser intensity of a0 & 2, the bubble shape can be approximately modeled as a
sphere [Kostyukov et al., 2004; Lu et al., 2006]. The electric potential produced by this
cavity filled with uniformly dense, positive ions has a minimum at its radius and (in-
creases toward and) peaks at its center. The electron density peak at the backside of the
cavity further decreases this potential which leads to a global minimum, thus making it
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2.6. Acceleration of Electrons in Laser Wakefields
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Figure 2.7. | Calculated trajectories of electrons with di↵erent initial condi-
tions under the fields of a bubble. The bubble is modeled after [Kostyukov et al.,
2009] as a sphere with a radius R having a uniform ion background (for the equa-
tions of motion, see Appendix section A.2). Electron trajectories under the influence
of the bubble fields are numerically solved for the initial conditions: py = 0, pz = 0

and a distance r > R (blue), r = R (red), r < R (green) at ⇠ = 0. Only electrons
with an initial position r 6 R and a su�ciently small negative momentum can be-
come trapped. However, since the electron moving on the green trajectory (r < R)
traverses the fields of the bubble in the region ⇠ > 0, it has negative momentum pz

at ⇠ = 0 and therefore the probability of getting trapped is decreased. Not consid-
ered in this model is the electric potential from the electron density spike trailing the
bubble. All distances are normalized to kp.

most likely for electrons to get trapped in this region. Since these electrons are strongly
accelerated to longitudinal velocities larger than �p, some of them entering this region
can get scattered into the bubble by the potential of this density peak and wavebreaking
occurs. In order for electrons to get trapped by the bubble, their longitudinal velocity
has to be at least that of the bubble (�z > �p). This condition can be written in terms
of only plasma and bubble parameters, namely the plasma wavelength �p, the bubble
radius R and its phase velocity �p [Kostyukov et al., 2009]

kpR &
p

2 �p, (2.59)

where kp = 2⇡/�p and �p = (1� �
2

p)
�1/2. Therefore, electrons can only get trapped in a

bubble with a su�ciently large radius R which is approximately the same as the laser
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FIG. 1. (Color) A sequence of 2-dimensional slices $x! z% reveals the evolution of the accelerating structure (electron density, blue)
and the laser pulse (orange). Each plot is a rectangular of size z ' 101:7 #m (longitudinal direction, z) and x ' 129:3 #m (transverse
direction, x). A broken white circle is superimposed on each plot to show the shape of the blown-out region. When the front of the laser
has propagated a distance (a) z ' 0:3 mm, the matched laser pulse has clearly excited a wakefield. Apart from some local modification
due to beam loading effects, as seen in (b) this wakefield remains robust even as the laser beam propagates though the plasma a
distance of 7.5 mm [as seen in (c) and (d)] or 5 Rayleigh lengths. After the laser beam has propagated 2 mm [as seen in (b)] into the
plasma, one can clearly see self-trapped electrons in the first accelerating bucket. The radial and longitudinal localization of the self-
trapped bunch is evident in part (c). After 7.5 mm the acceleration process terminates as the depleted laser pulse starts diffracting.
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