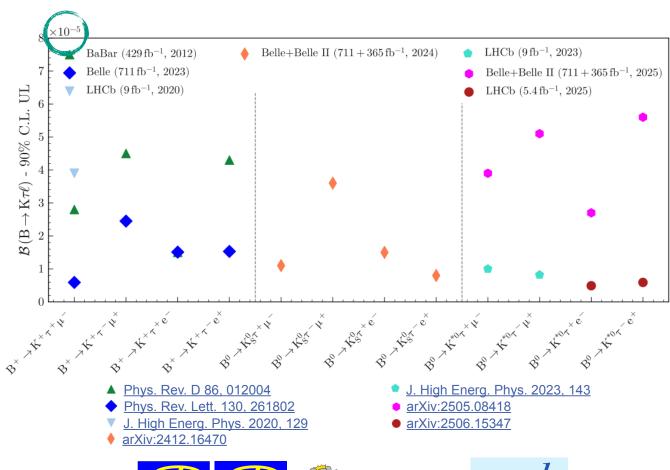


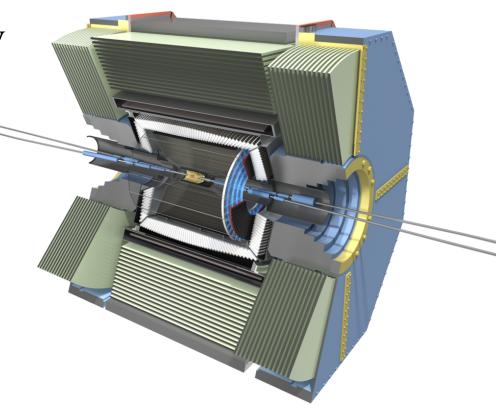
Search for $B^+ \to K^{*+} \tau^{\pm} \ell^{\mp}$ with hadronic tagging at the Belle II experiment


ETP meeting, 27 Oct 2025

Lara Fuchs, Torben Ferber, Pablo Goldenzweig, Raynette van Tonder

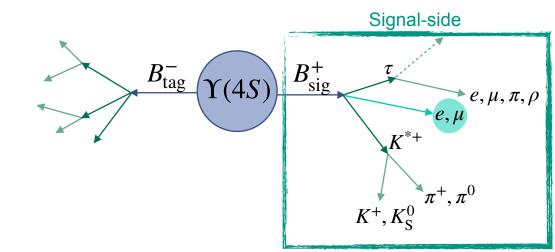
Motivation and previous measurements

- Search for lepton flavor violation in $b \to s\tau \ell$
- Motivated by tension with SM predictions in $R_{D^{(*)}}$ and $B^+ \to K^+ \nu \bar{\nu}$ excess (arXiv:2302.02886, arXiv:2311.14647)
- Highly suppressed in the SM, significantly enhanced in various theoretical models
 - Predicted branching fractions up to 10^{-6} (Phys. Rev. D 110, 075004)
- No existing measurement of $B^+ \to K^{*+} \tau \ell$



Belle II at SuperKEKB

- Asymmetric e^+e^- collider, located in Tsukuba, Japan
- World-record $\mathcal{L}_{int} = 5.1 \times 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$
- Main operation at the $\Upsilon(4S)$ resonance $\sqrt{s}=10.58\,\mathrm{GeV}$
 - Optimized for the production of BB pairs
 - Recorded dataset: $365 \, \mathrm{fb^{-1}} \sim 387 \times 10^6 \, B\bar{B}$ pairs
- General purpose detector, excellent PID performance
- Well-known initial conditions
- Suitable for decays with missing energy in final state

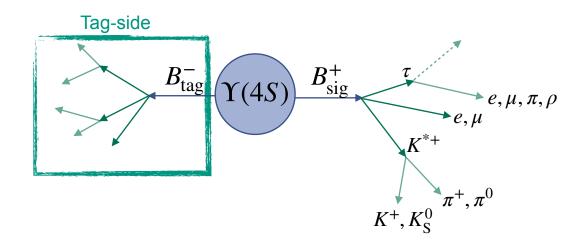

Reconstruction strategy

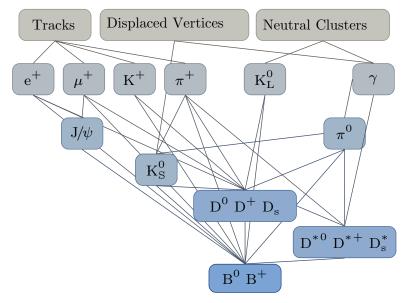
Signal-side \boldsymbol{B} meson

- Decay reconstruction via four decay channels
 - Same-sign SSe/ μ : $B^{+} \rightarrow K^{*+} \tau^{-} \ell^{+}$
 - Opposite-sign **OSe/µ**: $B^{+} \rightarrow K^{*+} \tau^{+} \ell^{-}$
- Reconstruction of K^{*+} via $K^+\pi^0$ or $K^0_{
 m S}\pi^+$
- Combination of K^{*+} candidate with prompt lepton, vertex fit
- Inclusive τ reconstruction via single charged track (one-prong decays)
 - Target three-prong decays with up to three tracks in the Rest of Event $n_{\rm tracks,\,ROE} < 3$

Tag-side \boldsymbol{B} meson

- Full reconstruction via hadronic decays (Full Event Interpretation)
 - Hadronic tagging

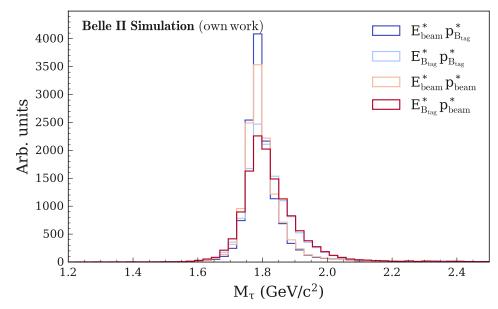




Hadronic tagging

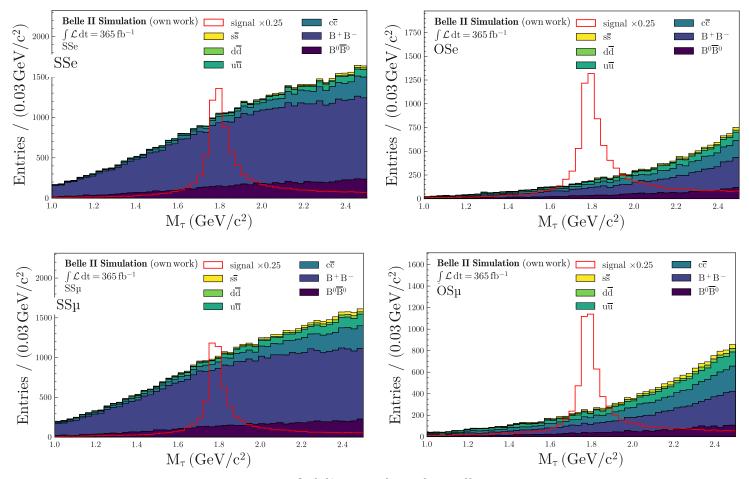
Tag-side B meson

- Full Event Interpretation (FEI)
 - T. Keck, et. al., Comp. Soft. Big Sci 3, 6 (2019)
 - Exclusive reconstruction algorithm for Belle II
 - Semileptonic and hadronic tagging
- Hadronic tagging
 - Reconstruction via hadronic decay chains only
 - Full reconstruction of $B_{
 m tag}$ kinematics, no missing energy
 - High purity, low efficiency
- Infer constraints on signal side



Recoil mass

- $B_{ ext{tag}}$ and $K^{*+}\mathscr{E}$ four-momenta are fully known, only missing energy from au decay
- Four-momentum conservation $p_{\tau} = p_{\mathrm{B}_{\mathrm{sig}}} (p_{\mathrm{K}^{*_{+}}} + p_{\ell})$

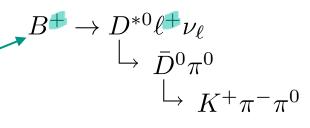

$$M_{\text{recoil}}^2 = M_{\tau}^2 = M_{\text{B}}^2 + M_{K^{*+}\ell} - 2(E_{\text{beam}}^* E_{K^{*+}\ell}^* + |\vec{p}_{B_{\text{tag}}}^*| |\vec{p}_{K^{*+}\ell}^*| \cos \theta)$$

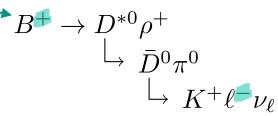
- Recoil mass peaks at τ mass for signal events
- Use $E^*_{
 m beam}$ and $ec{p}^*_{B_{
 m tag}}$ for best resolution
- Signal extraction via fit to $M_{ au}$

Recoil mass after preselection

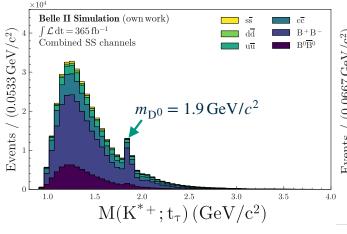
OSe 11.566 4236 38 SSµ 8.641 23311 64	$V_{ m qar{q}}$	2) N_{c}	1) $N_{ m Bar{B}}$	$\varepsilon_{\rm sig}/10^{-4}$	Channel
SSµ 8.641 23311 6	675	46	25181	11.255	SSe
	536	35	4236	11.566	OSe
	440	64	23311	8.641	$SS\mu$
OS μ 8.787 4328 5	109	51	4328	8.787	$OS\mu$

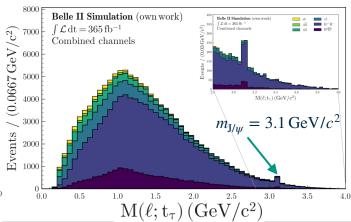
- Efficiency defined as $\varepsilon_{\rm sig} = N_{\rm sig}/(20 \times 10^6)$
- $lacksquare arepsilon_{
 m sig}$ and $N_{
 m bg}$ restricted to $1.0 < M_{\tau} < 2.5 \,\mathrm{GeV}/c^2$
- Applied selection criteria in <u>backup</u>
- Best candidate selection (BCS): candidate with highest p_{ℓ}



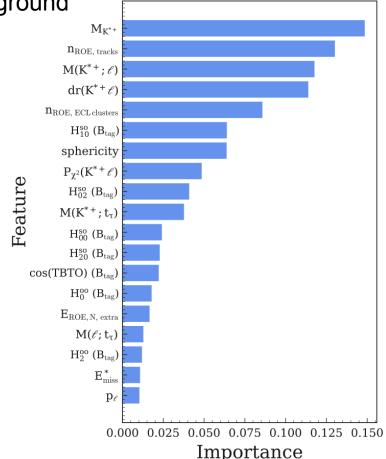

Arbitrary signal scaling

Background suppression - main sources


- 1) $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ events
 - lacksquare SS channels: semileptonic B decays
 - lacksquare OS channels: semileptonic D decays
 - Peaking background
 - SS channels: hadronic $\bar{D}^0 \to K^{(*)+}\pi^-$ decays
 - All channels: $J/\psi \to \ell^+\ell^-$ decays


2) Continuum $e^+e^- \rightarrow q\bar{q}, q \in u, d, s, c$

Channel	1) $N_{ m Bar{B}}$	$2)N_{ m qar{q}}$
SSe	25181	4675
OSe	4236	3536
$SS\mu$	23311	6440
$OS\mu$	4328	5109

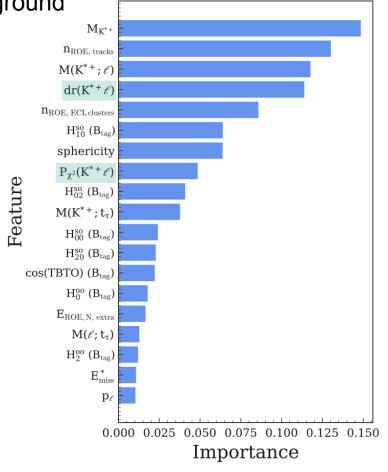


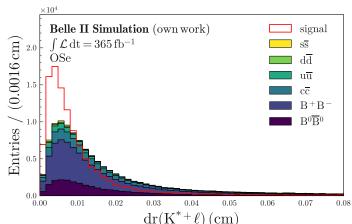
One BDT per channel targeting all background sources simultaneously

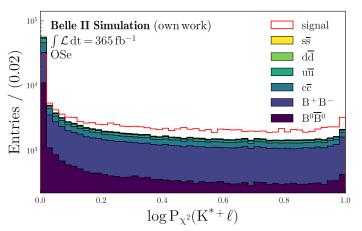
Training samples are restricted to $1.0 < M_{\tau} < 2.5 \,\mathrm{GeV/}c^2$

Training features:

- 1) $B\bar{B}$ events (+ continuum)
 - $K^{*+}\mathcal{C}$ -vertex variables
 - ROE-related variables
 - Invariant masses
 - Kinematic variables
- 2) Continuum $q\bar{q}$ events
 - Event-shape variables



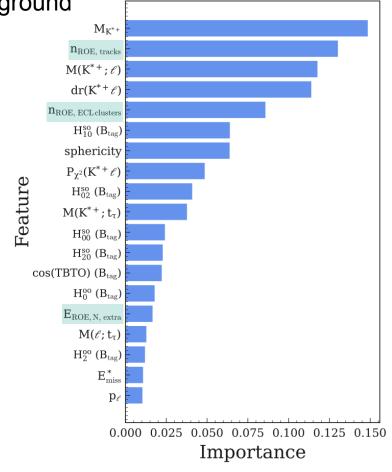


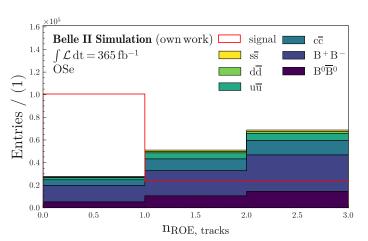

- One BDT per channel targeting all background sources simultaneously
- Training samples are restricted to $1.0 < M_{\tau} < 2.5 \,\mathrm{GeV/}c^2$

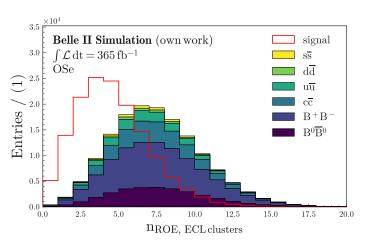
Training features:

- 1) $B\bar{B}$ events (+ continuum)
 - $K^{*+}\mathscr{C}$ -vertex variables
 - ROE-related variables
 - Invariant masses
 - Kinematic variables
- 2) Continuum $q\bar{q}$ events
 - Event-shape variables

One BDT per channel targeting all background

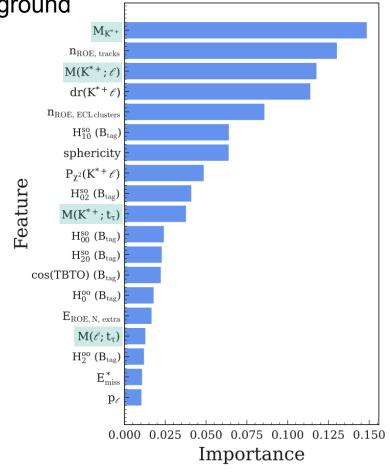

sources simultaneously

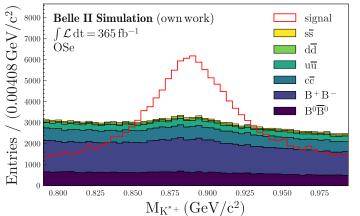

Training samples are restricted to

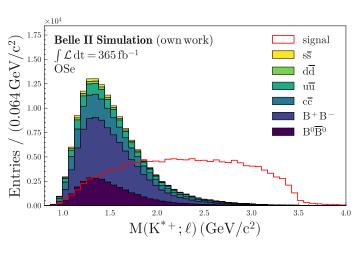

$$1.0 < M_{\tau} < 2.5 \,\mathrm{GeV}/c^2$$

Training features:

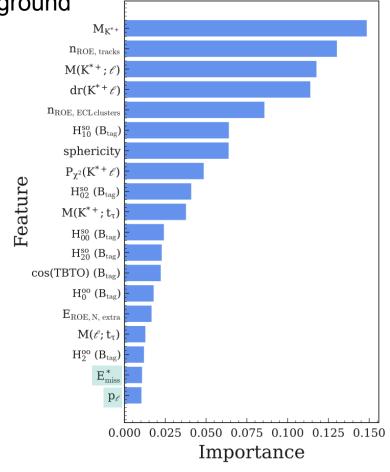
- 1) $B\bar{B}$ events (+ continuum)
 - $K^{*+}\ell$ -vertex variables
 - ROE-related variables
 - Invariant masses
 - Kinematic variables
- 2) Continuum $q\bar{q}$ events
 - Event-shape variables

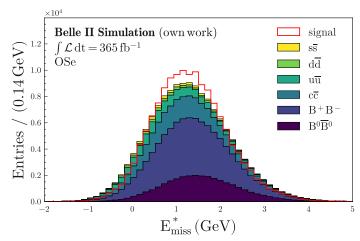

One BDT per channel targeting all background sources simultaneously

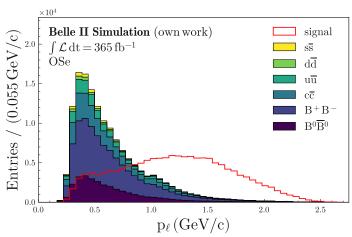

Training samples are restricted to $1.0 < M_{\tau} < 2.5 \,\mathrm{GeV}/c^2$


Training features:

- 1) $B\bar{B}$ events (+ continuum)
 - $K^{*+}\ell$ -vertex variables
 - **ROE-related variables**
 - Invariant masses
 - Kinematic variables
- 2) Continuum $q\bar{q}$ events
 - Event-shape variables

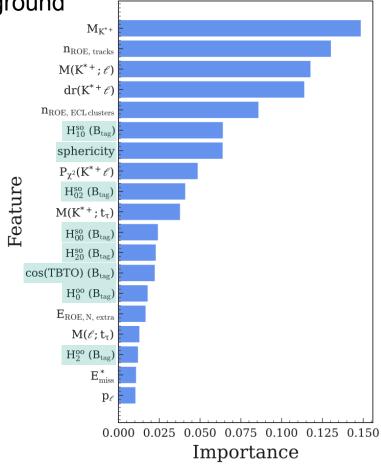


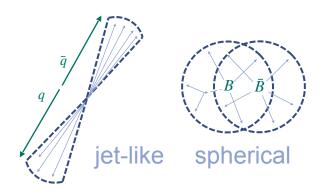



- One BDT per channel targeting all background sources simultaneously
- Training samples are restricted to $1.0 < M_{\tau} < 2.5 \,\mathrm{GeV}/c^2$

Training features:

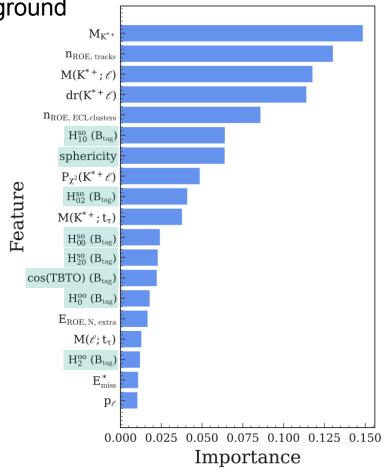
- 1) $B\bar{B}$ events (+ continuum)
 - $K^{*+}\ell$ -vertex variables
 - **ROE-related variables**
 - Invariant masses
 - Kinematic variables
- 2) Continuum $q\bar{q}$ events
 - Event-shape variables

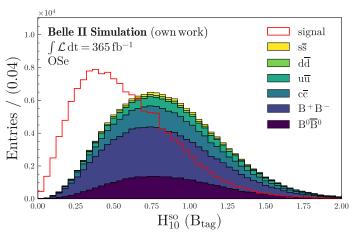


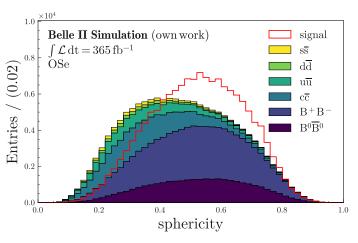

- One BDT per channel targeting all background sources simultaneously
- Training samples are restricted to $1.0 < M_{\tau} < 2.5 \,\mathrm{GeV}/c^2$

Training features:

- 1) $B\bar{B}$ events (+ continuum)
 - $K^{*+}\ell$ -vertex variables
 - **ROE-related variables**
 - Invariant masses
 - Kinematic variables
- 2) Continuum $q\bar{q}$ events
 - Event-shape variables





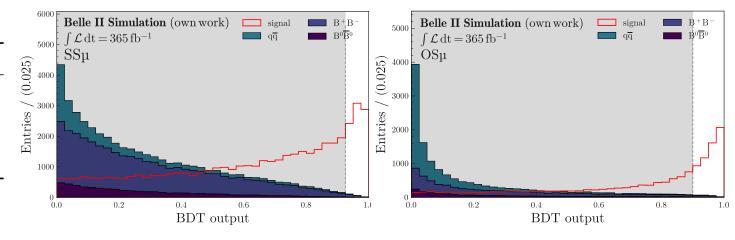

- One BDT per channel targeting all background sources simultaneously
- Training samples are restricted to $1.0 < M_{\tau} < 2.5 \,\mathrm{GeV}/c^2$

Training features:

- 1) $B\bar{B}$ events (+ continuum)
 - $K^{*+}\ell$ -vertex variables
 - **ROE-related variables**
 - Invariant masses
 - Kinematic variables
- 2) Continuum $q\bar{q}$ events
 - Event-shape variables

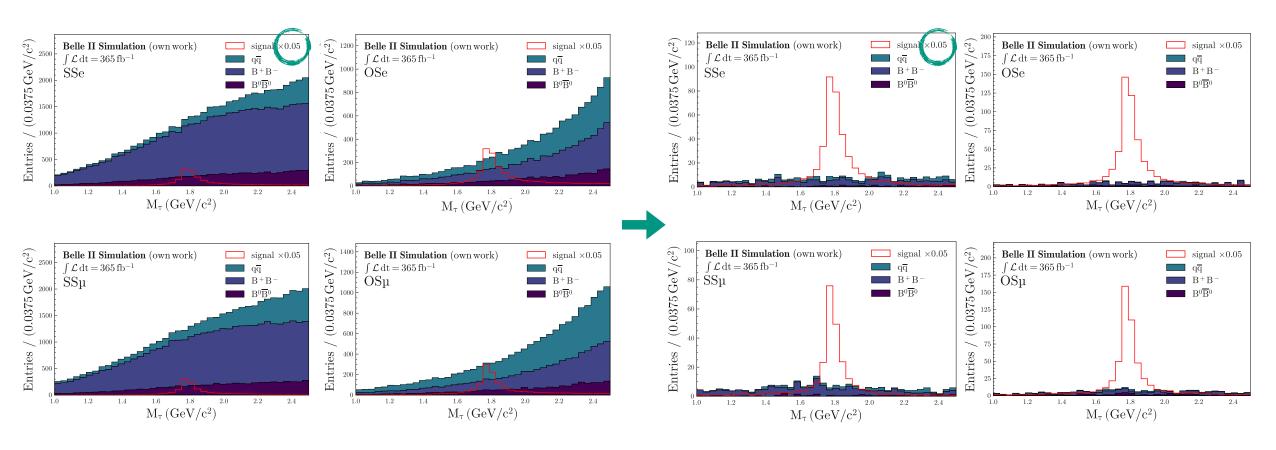
Background suppression - BDT output and selection

Selection of BDT cut by maximizing Punzi


figure of merit FOM =
$$\frac{\varepsilon_{\text{sig}}}{3/2 + \sqrt{N_{\text{bg}}}}$$

Optimization range: $1.56 < M_{\tau} < 2.0 \,\mathrm{GeV}/c^2$

50	Belle II Simulation (ov $\int \mathcal{L} dt = 365 \text{ fb}^{-1}$	$\operatorname{wn}\operatorname{work})$ $\begin{tabular}{c} \operatorname{signal} \\ \overline{} \end{array}$	B ₀ B ₀	Belle II Simulation (o $\int \mathcal{L} dt = 365 \text{ fb}^{-1}$	$\operatorname{wn}\operatorname{work})$ signal $\operatorname{q}\overline{\operatorname{q}}$	$\begin{array}{ c c c }\hline & B^+B^-\\ \hline & B^0\overline{B}{}^0\end{array}$
0	SSe		/ (0.0)	OSe 1500		
Ā	000			500		
		$^{0.6}_{ m BDT}$ output	0.8 1.1		BDT output	0.8 1.0


Channel	Opt. cut	$\varepsilon_{ m sig}/10^{-4}$	$N_{ m bg}$
SSe	0.925	2.702 (-76.0%)	182 (-99.4%)
OSe	0.875	4.063 (-64.9%)	122 (-98.4%)
$\mathrm{SS}\mu$	0.925	1.646 (-81.0%)	154 (-99.5%)
$OS\mu$	0.9	$3.627 \; (-58.7\%)$	$155 \ (-98.4\%)$

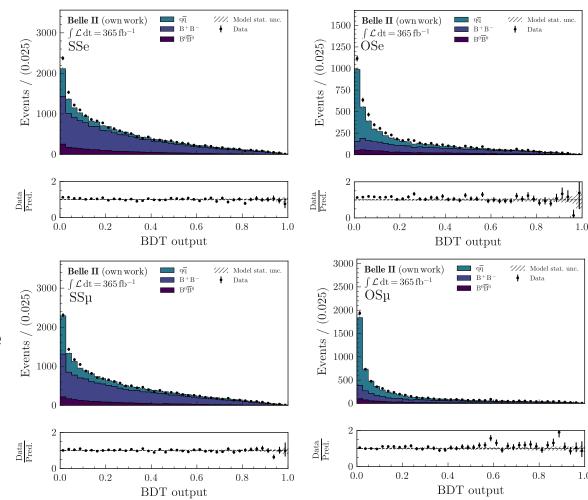
(restricted to $1.0 < M_{\tau} < 2.5 \,\mathrm{GeV}/c^2$)

Background suppression - recoil mass

After preselection

After BDT selection

Arbitrary signal scaling

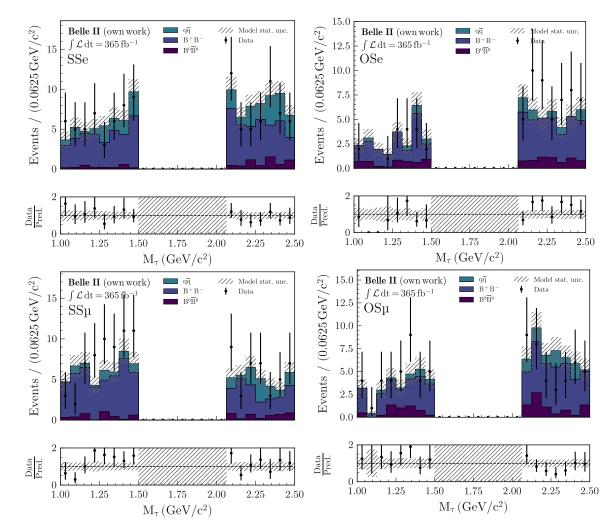

Data/MC comparison in recoil mass sidebands

Check data/MC agreement in $M_{ au}$ sidebands:

$$M_{\tau} \in (1.0, 1.49) \cup (2.07, 2.5) \,\text{GeV}/c^2$$

- $\sim 15 \,\%$ signal region
- Data/MC corrections applied: FEI, PID, π^0 , off-resonance calibration, photon energy bias, track momentum scaling
- Including statistical uncertainty only
- → Validation of BDT training and signal extraction variable

Channel	Data/MC ratio pre-BDT	Data/MC ratio post-BDT
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1.039 ± 0.009	0.969 ± 0.108
OSe	1.117 ± 0.016	1.064 ± 0.146
$SS\mu$	1.015 ± 0.009	0.985 ± 0.128
OSμ	1.057 ± 0.014	1.042 ± 0.134


Data/MC comparison in recoil mass sidebands

Check data/MC agreement in M_{τ} sidebands:

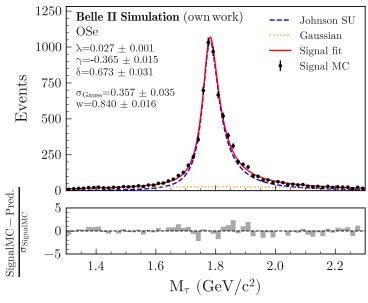
$$M_{\tau} \in (1.0, 1.49) \cup (2.07, 2.5) \,\text{GeV}/c^2$$

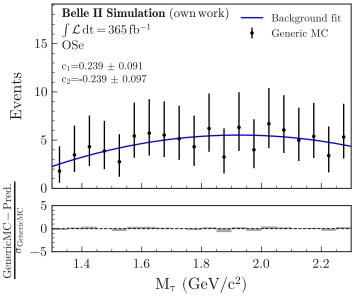
- $\sim 15 \%$ signal region
- Data/MC corrections applied: FEI, PID, π^0 , off-resonance calibration, photon energy bias, track momentum scaling
- Including statistical uncertainty only
- Validation of BDT training and signal extraction variable

Channel	Data/MC ratio pre-BDT	Data/MC ratio post-BDT
$\overline{\text{SSe}}$	1.039 ± 0.009	0.969 ± 0.108
OSe	1.117 ± 0.016	1.064 ± 0.146
$\mathrm{SS}\mu$	1.015 ± 0.009	0.985 ± 0.128
$OS\mu$	1.057 ± 0.014	1.042 ± 0.134

Signal and background modeling

- Unbinned maximum likelihood fits to $M_{ au}$
 - Fit region: $1.3 < M_{\tau} < 2.3 \, {\rm GeV}/c^2$ to avoid low statistics at edges → fit stability

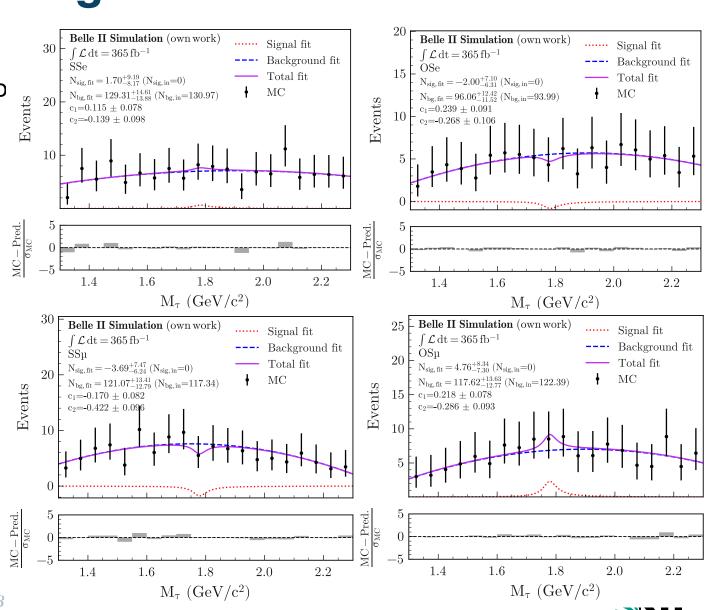

Signal pdf:


- Johnson SU pdf + broad Gaussian to model main peak and tails
- Means fixed to $m_{\tau} \longrightarrow 5$ free parameters $\lambda, \gamma, \delta, \sigma_{\text{Gaus}}, w$

Background pdf:

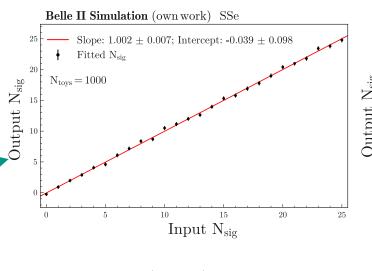
Second order Chebyshev polynomials

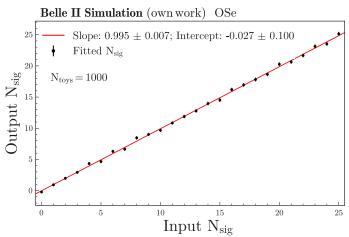
Example fit: OSe

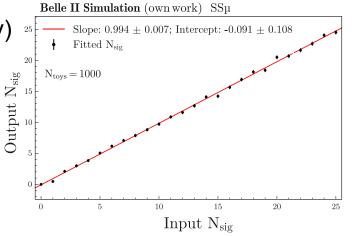


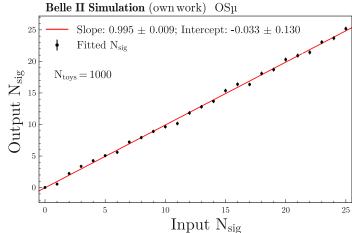
Combined signal and background fit

- Extended unbinned maximum likelihood fits to background MC only
- Signal shape parameters are fixed to results from MC fit
- 4 free fit parameters:
 - Signal yield $N_{\rm sig}$
 - Background yield $N_{\rm bg}$
 - Polynomial coefficients c_1, c_2

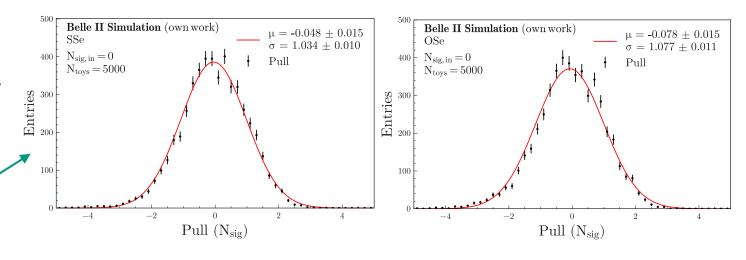


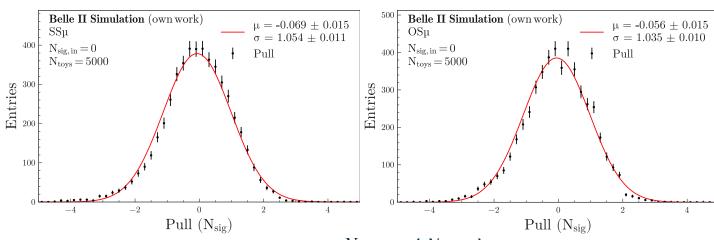

Fit validation


- Signal extraction is tested in toy studies
 - Background is generated from fitted pdf
 - Signal is sampled from MC



- Ideal linear relationship (within uncertainty)
- Reliable extraction of signal yield



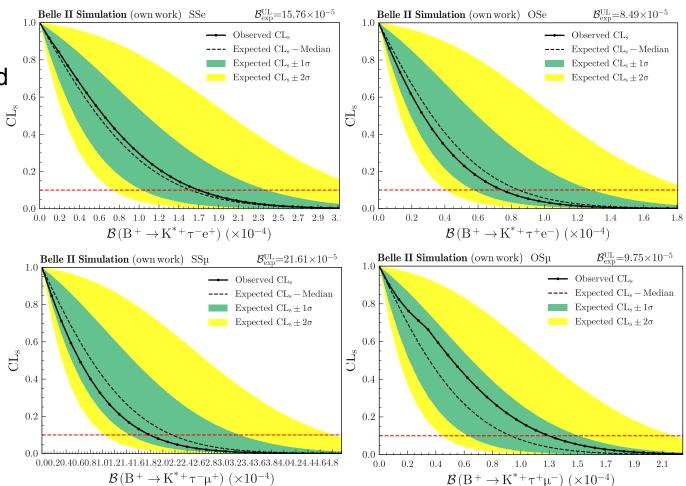


Fit validation

- Signal extraction is tested in toy studies
 - Background is generated from fitted pdf
 - Signal is sampled from MC

- Validation of linearity and pull distributions
 - Slight asymmetry and bias towards negative values caused by toy datasets with few events generated around m_{τ}
 - Better agreement with $\mu = 0$, $\sigma = 1$ for higher signal injections and $N_{
 m bg}$

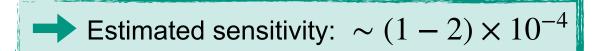
$$Pull_{sig} = \frac{N_{sig, fit} - \langle N_{sig, in} \rangle}{\Delta(N_{sig, fit})}$$

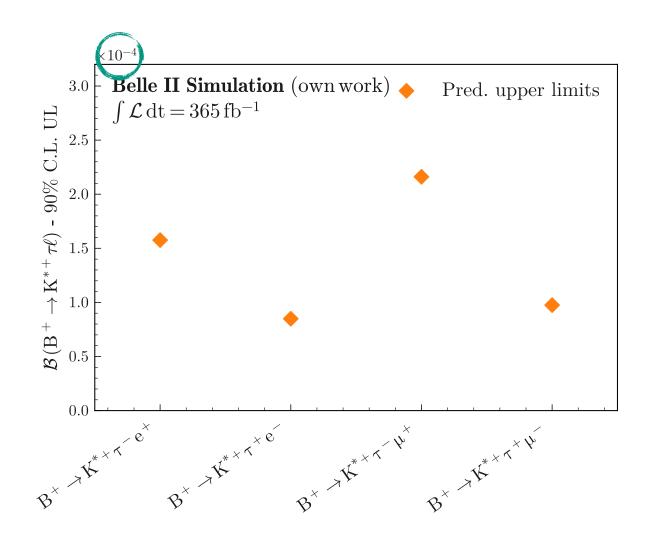


Sensitivity estimation

- Derivation of expected 90% C.L. upper limits on signal yields for MC with asymptotic CLs method
- Scanning over $N_{\text{sig}} \in [0, N_{\text{sig}}^{3\sigma}]$
- Conversion into limit on branching fractions

$$\mathcal{B}^{\mathrm{UL}} = rac{N_{\mathrm{sig}}^{\mathrm{UL}}}{N_{\Upsilon(4\mathrm{S})} \cdot 2 \cdot f^{+-} \cdot arepsilon_{\mathrm{sig}}}$$


Channel SSe OSe SSµ OSµ	$\mathcal{B}_{\rm exp}^{\rm UL}$ 15.76×10^{-5} 8.49×10^{-5} 21.61×10^{-5} 9.75×10^{-5}	OS modes are twice as sensitive
--------------------------	--	---------------------------------


Summary

- First search for $B^+ \to K^{*+} \tau^{\pm} \ell^{\mp}$
 - Reconstruction in four signal channels: SSe, OSe, SSµ, OSµ
 - Hadronic tagging: full reconstruction of $B_{
 m tag}$
 - BDTs for background suppression
 - Signal extraction via fits to M_{τ}

Outlook

- Estimation of systematic uncertainties
- Validation on control channels

Backup

MC samples

- MC15ri, hadronic FEI skim (release-06) → move to MC16 (release-08)
- Signal MC: **80M** generated $B^+ \to K^{*+} \tau^{\pm} \ell^{\mp}$ events
 - One decay file combining signal channels with 25% branching fraction each
 - Generic K^{*+} and τ decays
- Generic MC: $\mathbf{1} \, \mathbf{ab^{-1}}$ continuum $q\overline{q}$, charged B^+B^- and mixed $B^0\overline{B}^0$

MC/Data corrections

- FEI corrections
- Charged hadron PID corrections
- Lepton PID corrections
- Neutral π^0 , $K_{\rm S}^0$ corrections
- Data corrections: photon energy bias (π^0) daughters), track momentum scaling

Off-resonance calibration

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	dd //// Model stat. unc. ■ uu
SSe 1.131 ± 0.017 OSe 1.130 ± 0.018 SS μ 1.161 ± 0.018 OS μ 1.110 ± 0.018)
OSe 1.130 ± 0.018 SSµ 1.161 ± 0.018 OSµ 1.110 ± 0.018	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>.</u>
$OS\mu = 1.110 \pm 0.018$	
	• • • • • • • • • • • • • • • • • • • •
	3
$\mathrm{E}_{\mathrm{ROE},\mathrm{N},\;\mathrm{extra}}\left(\mathrm{GeV} ight)$	(GeV)

Signal-side selection ($K^{*+}\mathcal{C}$ -system)

$$e^{+}, \mu^{+}$$

- FixedThresh09 global BDT
- Track cuts: $17^{\circ} < \theta < 150^{\circ}, dr < 2 \text{ cm}, |dz| < 4 \text{ cm}, p_{t} > 0.1 \text{ GeV}/c$
- Bremsstrahlung correction for electrons

$$K^+, \pi^+$$

- Track cuts + $n_{\text{CDChits}} > 20$
- Global PID > 0.6

$$K_{\rm S}^0$$

- stdKshort
- goodBelleKshort

 π^0

- May2020 recommendations 30 % efficiency list
- \blacksquare π^0 daughter cuts

 π^0 daughters

- E > 0.075, 0.05, 0.1 GeV (FW, BRL, BW)
- beamBackgroundSuppression > 0.3 and fakePhotonSuppression > 0.3 if minC2TDist > 20 cm

 K^{*+}

 $-0.79 \, \text{GeV}/c^2 < M_{K^{*+}} < 0.994 \, \text{GeV}/c^2$

Tag-side and ROE selection

B_{tag}

- Hadronic tag: **single** candidate selection with highest $P_{
 m FEI}$
- $M_{\rm bc} > 5.27 \,{\rm GeV}/c^2$
- $-0.15 < \Delta E < 0.1 \,\text{GeV}$
- $P_{\rm FEI} > 0.001$
- \circ cos TBTO < 0.9

ROE

- "Good photons": fakePhotonSuppression > 0.3 and beamBackgroundSuppression > 0.3 if minC2TDist $> 20\,\mathrm{cm}$ (isolated photons) $E > 0.075, 0.05, 0.1\,\mathrm{GeV}$ (FW, BRL, BW)
- "Good tracks": $|dz| < 4 \,\mathrm{cm}, \, dr < 2 \,\mathrm{cm}, \, 17^{\circ} < \theta < 150^{\circ}, \, p_{\mathrm{t}} > 0.1 \,\mathrm{GeV}/c$
- $n_{\text{tracks, ROE}} < 3$

Best candidate selection

- Main cause of multiplicity: misreconstructed candidates with prompt lepton and au daughter switched
- BCS:
 - 1. Candidate with highest prompt lepton momentum p_{ℓ} (multiplicity before: 1.7)
 - 2. Random selection (multiplicity before: 1.2)

Charged background composition - SS modes

SSe

B^+ daughters	Frac. $(\%)$	D^0 daughters	Frac. $(\%)$	D^+ daughters	Frac. (%)
$\bar{D}^{*0}e^+\nu_{\mathrm{e}}$	32.7	$K^{-}\pi^{+}\pi^{0}$	21.3	$K^{-}\pi^{+}\pi^{+}$	28.5
$\bar{D}^{*0}e^+ u_{ m e}\gamma$	16.6	$a_{1}^{-}\pi^{+}$	12.6	$\pi^{-}\pi^{0}K_{ m S}^{0}$	9.5
$ar{D}^0 e^+ u_{ m e}$	11.6	$K^-\pi^+$	7.8	$\bar{K}^{*0}\pi^0\pi^+$	9.0
$ar{D}^0 e^+ u_{ m e} \gamma$	5.9	$K^{*-}\rho^+$	7.3	$K^-\pi^+\pi^+\gamma$	4.4
$\bar{D}_1^0 e^+ \nu_{ m e}$	5.0	$K^-\pi^+\pi^0\pi^0$	3.9	$\bar{K}_{1}^{\prime 0}\pi^{+}$	4.3
$ar{D}^{*0}e^+ u_{ m e}\gamma\gamma$	4.2	$K_{\rm S}^0\pi^-\pi^+$	3.5	$\pi^+ K_{ m S}^0$	3.5
$ar{D}_1^0 e^+ u_{ m e} \gamma$	2.4	$\bar{K}^{*0}\pi^{+}\pi^{-}$	2.9	$ar{K}_1^{\prime 0} ar{K}_{ m S}^0$	3.3
$\bar{D}_{1}^{'0}e^{+}\nu_{\mathrm{e}}$	2.0	$K^-\pi^+\omega$	2.5	$\bar{K}^{*0}\mu^{+}\nu_{\mu}$	2.8
$\bar{D}_{2}^{*0}e^{+}\nu_{\mathrm{e}}$	1.7	$K^-\pi^+\pi^0\gamma$	2.4	$\bar{K}^{*0}\rho^{+}$	2.7
$\bar{D}_{0}^{*0}e^{+}\nu_{\mathrm{e}}$	1.5	$\bar{K}^{*0}\pi^{+}\pi^{-}\pi^{0}$	1.7	$\bar{K}^0 e^+ \nu_{ m e}$	2.5
$\bar{D}^{\check{0}}e^{+}\nu_{\mathrm{e}}\gamma\gamma$	1.4	$K_1^-\pi^+$	1.7	$K^+K^-\pi^+$	2.4
$\bar{D}_1^{\prime0}e^+ u_{ m e}\gamma$	1.1	$K^-\pi^+\gamma$	1.4	$\bar{K}^0\mu^- u_\mu$	1.8
$\bar{D}_{2}^{*0}e^{+}\nu_{\mathrm{e}}\gamma$	0.8	$K^{-}\pi^{+}\pi^{-}\pi^{+}$	1.3	$\bar{K}^{*0}e^{+}\nu_{\rm e}$	1.7
$\bar{D}^{*0}e^+ u_{ m e}\gamma\gamma\gamma$	0.7	$\bar{K}^{*0}\pi^0\pi^0$	1.2	$K^-\pi^+\rho^+$	1.6

72.7

 $K^{*-}\mu + \nu_{\mu}$

88.4

SSµ

B^+ daughters	Frac. (%)	D^0 daughters	Frac. (%)	D^+ daughters	Frac. (%)
$\bar{D}^{*0}\mu^{+}\nu_{\mu}$	44.8	$K^{-}\pi^{+}\pi^{0}$	21.1	$K^-\pi^+\pi^+$	27.5
$ar{D}^0\mu^+ u_\mu$	15.6	$K^{-}a_{1}^{+}$	12.8	$K_{\rm S}^0 \pi^+ \pi^0$	9.4
$\bar{D}^{*0}\mu^+\nu_\mu\gamma$	7.1	$K^-\pi^+$	7.7	$\bar{K}^{*0}\pi^{+}\pi^{0}$	8.8
$ar{D}_1^0 \mu^+ u_\mu$	6.7	$K^{*-}\rho^+$	7.5	$K^-\pi^+\pi^+\gamma$	4.1
$\bar{D}_{1}^{\prime 0}\mu^{+}\nu_{\mu}$	2.8	$K^{-}\pi^{+}\pi^{0}\pi^{0}$	3.8	$\bar{K}_{1}^{\prime 0}\pi^{+}$	4.1
$ar{D}^{0}\mu^{+} u_{\mu}\gamma$	2.5	$K_{\rm S}^0 \pi^+ \pi^-$	3.5	$K^-\mu^+ u_\mu$	3.8
$D_2^{*0} \mu^+ \nu_\mu$	2.1	$\bar{K}^{*0}\pi^{+}\pi^{-}$	2.9	$egin{array}{c} K_{ m S}^0 \pi^+ \ K_{ m S}^0 a_1^- \end{array}$	3.4
$D_0^{*0} \mu^+ \nu_\mu$	1.9	$K^-\pi^+\omega$	2.4	$K_{\rm S}^{0}a_{1}^{-}$	3.4
$\bar{D}_1^0 \mu^+ u_\mu \gamma$	1.1	$K^-\pi^+\pi^0\gamma$	2.4	$\bar{K}^{*0}\mu^{+}\nu_{\mu}$	3.1
$ar{D}^{ar{0}}\mu^+ u_\mu\eta$	0.8	$\bar{K}^{*0}\pi^{+}\pi^{-}\pi^{0}$	1.7	$K^+K^-\pi^+$	2.9
$\bar{D}^{*0}\mu^+ u_\mu\eta$	0.8	$K_1^-\pi^+$	1.7	$\bar{K}^{*0}\rho^+$	2.6
$\bar{D}^{*0}\mu^+ u_\mu\gamma\gamma$	0.5	$K^-\pi^+\gamma$	1.4	$K^-\pi^+\rho^+$	1.8
$D_1^{\prime 0} \mu^+ \nu_\mu \gamma$	0.5	$K^{-}\pi^{+}\pi^{-}\pi^{+}$	1.3	$\bar{K}^{*0}e^{+}\nu_{\rm e}$	1.6
$\bar{D}^{*0}a_1^+$	0.5	$\bar{K}^{*0}\pi^0\pi^0$	1.3	$\bar{K}^0 e^+ \nu_{ m e}$	1.3
$\bar{D}^{*0}\tau^+\nu_{ au}$	0.4	$K^{*-}\mu^+\nu_\mu$	1.2	$K^{+}K^{-}\pi^{+}\pi^{0}$	1.2
sum	87.9	sum	72.7	sum	79.1

 sum

 $\bar{D}_0^{*0} e^+ \nu_{\rm e} \gamma$

 sum

Charged background composition - OS modes

OSe

B^+ daughters	Frac. (%)	D^0 daughters	Frac. (%)	D^+ daughters	Frac. (%)
$\bar{D}^{*0}\mu^{+}\nu_{\mu}$	44.8	$K^{-}\pi^{+}\pi^{0}$	21.1	$K^{-}\pi^{+}\pi^{+}$	27.5
$\bar{D}^0 \mu^+ u_\mu$	15.6	$K^{-}a_{1}^{+}$	12.8	$K_{\rm S}^0 \pi^+ \pi^0$	9.4
$ar{D}^{*0}\mu^+ u_\mu\gamma$	7.1	$K^-\pi^+$	7.7	$\bar{K}^{*0}\pi^{+}\pi^{0}$	8.8
$ar{D}_1^0 \mu^+ u_\mu$	6.7	$K^{*-}\rho^+$	7.5	$K^-\pi^+\pi^+\gamma$	4.1
$\bar{D}_1^{\prime0}\mu^+ u_\mu$	2.8	$K^{-}\pi^{+}\pi^{0}\pi^{0}$	3.8	$\bar{K}_1^{\prime0}\pi^+$	4.1
$ar{D}^0\mu^+ u_\mu^{}\gamma$	2.5	$K_{\rm S}^0 \pi^+ \pi^-$	3.5	$K^-\mu^+ u_\mu$	3.8
$D_2^{*0} \mu^+ \nu_\mu$	2.1	$\bar{K}^{*0}\pi^{+}\pi^{-}$	2.9	$K_{ m S}^0\pi^+$	3.4
$D_0^{*0} \mu^+ \nu_\mu$	1.9	$K^-\pi^+\omega$	2.4	$K_{\mathrm{S}}^{0}a_{1}^{-}$	3.4
$\bar{D}_1^0 \mu^+ u_\mu \gamma$	1.1	$K^-\pi^+\pi^0\gamma$	2.4	$\bar{K}^{*0}\mu^{+}\nu_{\mu}$	3.1
$ar{D}^{ar{0}}\mu^+ u_\mu\eta$	0.8	$\bar{K}^{*0}\pi^{+}\pi^{-}\pi^{0}$	1.7	$K^+K^-\pi^+$	2.9
$\bar{D}^{*0}\mu^+\nu_\mu\eta$	0.8	$K_1^-\pi^+$	1.7	$\bar{K}^{*0}\rho^{+}$	2.6
$\bar{D}^{*0}\mu^+ u_\mu\gamma\gamma$	0.5	$K^-\pi^+\gamma$	1.4	$K^-\pi^+\rho^+$	1.8
$D_1^{\prime 0} \mu^+ \nu_\mu \gamma$	0.5	$K^{-}\pi^{+}\pi^{-}\pi^{+}$	1.3	$\bar{K}^{*0}e^{+}\nu_{\rm e}$	1.6
$\bar{D}^{*0}a_1^+$	0.5	$\bar{K}^{*0}\pi^0\pi^0$	1.3	$\bar{K}^0 e^+ \nu_{ m e}$	1.3
$\bar{D}^{*0}\tau^{+}\nu_{\tau}$	0.4	$K^{*-}\mu^+\nu_\mu$	1.2	$K^{+}K^{-}\pi^{+}\pi^{0}$	1.2
sum	87.9	sum	72.7	sum	79.1

OSμ

B^+ daughters	Frac. (%)	D^0 daughters	Frac. (%)	D^+ daughters	Frac. (%)
$\bar{D}^{*0}D_{s0}^{*+}$	3.7	$K^{-}\pi^{+}\pi^{0}$	20.4	$K^-\pi^+\pi^+$	19.4
$\bar{D}^{*0}D_{s}^{*+}$	3.7	$K^-\mu^+ u_\mu$	9.6	$\bar{K}^0\mu^+ u_\mu$	17.0
$ar{D}^{*0}D_{s}^{*+} \ ar{D}^{*0}\mu^{+} u_{\mu}$	3.4	$K^-\pi^+$	9.4	$K_{\rm S}^0 \pi^+ \pi^0$	9.0
$\bar{D}^{*0}\pi^{+}\pi^{-}\pi^{+}\pi^{0}$	3.4	$K^{-}a_{1}^{+}$	9.2	$egin{array}{c} K_{ m S}^0 \pi^+ \pi^0 \ ar{K}^{*0} \mu^+ u_{\mu} \end{array}$	5.9
$\bar{D}^{*0}a_1^+$	3.4	$K^{*-}\rho^{+}$	4.3	$\bar{K}^{*0}\pi^{+}\pi^{0}$	4.8
$\bar{D}^0 D_s^{\bar+}$	2.6	$K^{*-}\mu^+\nu_\mu$	4.0	$K_{\rm S}^0\pi^+$	3.3
$\bar{D}^{0}D_{s0}^{*+}$	2.3	$K_{\rm S}^0 \pi^+ \pi^-$	3.8	$K^-\pi^+\pi^+\gamma$	3.2
$D^{*-}\pi^{+}\pi^{+}\pi^{0}$	2.0	$\bar{K}^{*0}\pi^{+}\pi^{-}$	2.3	$K_{\rm S}^0 a_1^+$	2.5
$\bar{D}^{*0}D_{s}^{+}$	1.9	$K^-\pi^+\pi^0\gamma$	2.3	$K_1^{0}\pi^+$	2.4
$\bar{D}^0 D_s^{*+}$	1.9	$K^-\pi^+\pi^0\pi^0$	2.0	$K_{\rm L}^{0}\pi^{+}\pi^{0}$	2.0
$\bar{D}^{*0}K^{*+}$	1.7	$K^-\pi^+\gamma$	1.7	$K^+K^-\pi^+$	1.8
$\bar{D}^{*0}_{s1}D^{+}_{s1}$	1.6	$K^-\mu^+\nu_\mu\gamma$	1.5	$\bar{K}^{*0}\rho^{+}$	1.4
$\bar{D}^0\mu + \nu_\mu$	1.5	$K_1^-\pi^+$	1.3	$\pi^{+}\pi^{-}\pi^{+}\pi^{0}$	1.2
$ar{D}^0 ho^+$	1.3	$\pi^{+}\pi^{-}\pi^{0}$	1.3	$\bar{K}^0\mu^+ u_\mu\gamma$	1.0
$\bar{D}^{*0}\rho^{+}$	1.2	$K^-\pi^+\omega$	1.2	$K^{*-}\pi^{+}\pi^{+}$	1.0
sum	35.4	sum	74.1	sum	75.8

